The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, caring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints. Approaches to teaching and learning (ATL) within the DP are deliberate strategies, skills and attitudes that permeate the teaching and learning environment. In the DP students develop skills from five ATL categories: thinking, research, social, self-management and communication.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language(s), 3) social sciences, 4) experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours), while the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—are compulsory and central to the philosophy of the programme.

I. Course description and aims

Physics is the most fundamental of the experimental sciences, as it seeks to explain the universe itself, from the very smallest particles to the vast distances between galaxies. Despite the exciting and extraordinary development of ideas throughout the history of physics, observations remain essential to the very core of the subject. Models are developed to try to understand observations, and these themselves can become theories that attempt to explain the observations.

Besides helping us better understand the natural world, physics gives us the ability to alter our environments. This raises the issue of the impact of physics on society, the moral and ethical dilemmas, and the social, economic and environmental implications of the work of physicists.

By studying physics students should become aware of how scientists work and communicate with each other. While the scientific method may take on a wide variety of forms, it is the emphasis on a practical approach through experimental work that characterizes the subject. Teachers provide students with opportunities to develop manipulative skills, design investigations, collect data, analyse results and evaluate and communicate their findings.

Through the overarching theme of the nature of science, the aims of the DP physics course are to enable students to:
1. appreciate scientific study and creativity within a global context through stimulating and challenging opportunities
2. acquire a body of knowledge, methods and techniques that characterize science and technology
3. apply and use a body of knowledge, methods and techniques that characterize science and technology
4. develop an ability to analyse, evaluate and synthesize scientific information
5. develop a critical awareness of the need for, and the value of, effective collaboration and communication during scientific activities
6. develop experimental and investigative scientific skills including the use of current technologies
7. develop and apply 21st century communication skills in the study of science
8. become critically aware, as global citizens, of the ethical implications of using science and technology
9. develop an appreciation of the possibilities and limitations of science and technology
10. develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge.

II. Curriculum model overview

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommended teaching hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>1. Measurements and uncertainties</td>
<td>5</td>
</tr>
<tr>
<td>2. Mechanics</td>
<td>22</td>
</tr>
<tr>
<td>3. Thermal physics</td>
<td>11</td>
</tr>
<tr>
<td>4. Waves</td>
<td>15</td>
</tr>
<tr>
<td>5. Electricity and magnetism</td>
<td>15</td>
</tr>
<tr>
<td>6. Circular motion and gravitation</td>
<td>5</td>
</tr>
<tr>
<td>7. Atomic, nuclear and particle physics</td>
<td>14</td>
</tr>
<tr>
<td>8. Energy production</td>
<td>8</td>
</tr>
</tbody>
</table>
Additional higher level
9. Wave phenomena
10. Fields
11. Electromagnetic induction
12. Quantum and nuclear physics

Option (Choice of one out of four)
A. Relativity
B. Engineering physics
C. Imaging
D. Astrophysics

Practical scheme of work
Prescribed and other practical activities
Individual investigation (internally assessed)
Group 4 project

The group 4 project
The group 4 project is a collaborative activity where students from different group 4 subjects, within or between schools, work together. It allows for concepts and perceptions from across disciplines to be shared while appreciating the environmental, social and ethical implications of science and technology. It can be practically or theoretically based and aims to develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge. The emphasis is on interdisciplinary cooperation and the scientific processes.

III. Assessment model
It is the intention of this course that students are able to fulfill the following assessment objectives:
1. Demonstrate knowledge and understanding of:
 - facts, concepts, and terminology
 - methodologies and techniques
 - communicating scientific information.
2. Apply:
 - facts, concepts, and terminology
 - methodologies and techniques
 - methods of communicating scientific information.
3. Formulate, analyse and evaluate:
 - hypotheses, research questions and predictions
 - methodologies and techniques
 - primary and secondary data
 - scientific explanations.
4. Demonstrate the appropriate research, experimental, and personal skills necessary to carry out insightful and ethical investigations.

Assessment at a glance

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>Format of assessment</th>
<th>Time (hours)</th>
<th>Weighting of final grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>40 multiple-choice questions</td>
<td>4.5</td>
<td>80</td>
</tr>
<tr>
<td>Paper 1</td>
<td>Short answer and extended response questions (Core and AHL)</td>
<td>2.25</td>
<td>36</td>
</tr>
<tr>
<td>Paper 2</td>
<td>Data- and practical-based questions plus, short answer and extended response questions on the option</td>
<td>1.25</td>
<td>24</td>
</tr>
<tr>
<td>Internal</td>
<td>Investigation and write-up of 6 to 12 pages</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

IV. Sample questions

- Why is wave-particle duality used in describing the properties of light?
 A. Light is both a wave and a particle
 B. Both wave and particle models can explain all the properties of light
 C. Different properties of light can be more clearly explained by using one of the wave or particle models
 D. Scientists feel more confident when using more than one model to explain a phenomenon (Paper 1)

- The tower is 120m high with an internal diameter of 3.5m. When most of the air has been removed, the pressure in the tower is 0.96 Pa. Determine the number of molecules of air in the tower when the temperature of the air is 300 K. (Paper 2)

- The streamlines above the airfoil are closer to each other than the streamlines below the airfoil. Suggest why this implies that the speed of the air above the airfoil is greater than the speed of air below the airfoil. (Paper 3)