Aperçu de cours du Programme du diplôme du Baccalauréat International

Sciences : science du sport, de l'exercice et de la santé

Première évaluation en 2026

Le Programme du diplôme est un programme d'études préuniversitaires rigoureux qui s'étend sur deux ans et s'adresse aux élèves de 16 à 19 ans. Il couvre une grande sélection de domaines d'études et a pour but d'encourager les élèves non seulement à développer leurs connaissances, mais également à faire preuve de curiosité intellectuelle ainsi que d'altruisme et de compassion. Ce programme insiste fortement sur le besoin de favoriser chez les élèves le développement de la compréhension interculturelle, de l'ouverture d'esprit et des attitudes qui leur seront nécessaires pour apprendre à respecter et à évaluer tout un éventail de points de vue.

Le programme est divisé en six domaines d'études, répartis autour d'un tronc commun. Ainsi, les élèves étudient deux langues vivantes (ou une langue vivante et une langue classique), une matière de sciences humaines ou de sciences sociales, une science expérimentale, les mathématiques et une discipline artistique. Les élèves ont aussi la possibilité de choisir deux matières dans un même domaine d'études à la place d'une matière artistique. C'est ce vaste éventail de matières qui fait du Programme du diplôme un programme d'études exigeant conçu pour préparer efficacement les élèves à leur entrée à l'université. Une certaine flexibilité est néanmoins accordée aux élèves dans leur choix de matières au sein de chaque domaine d'études. Cette flexibilité leur permet d'opter pour des matières qui les intéressent tout particulièrement, avec la possibilité d'en poursuivre l'étude à l'université.

ent à faire mme
la PROGRAMME DU DIPLOME DE L'IN
ETUDES EN LANGUE
ET LITTERATURE

ARTS

Lette

ONT ANGE

ARTS

LETTERNATION ALE

ARTS

LETTERNATION ALE

ONT ANGE

ARTS

En principe, trois matières (et quatre au plus) doivent être présentées au niveau supérieur (NS) et les autres au niveau moyen (NM). L'IB recommande 240 heures d'enseignement pour les matières du NS et 150 heures pour celles du NM. Au NS, l'étude des matières est plus étendue et plus approfondie qu'au NM. De plus, les trois composantes du tronc commun – le mémoire, la théorie de la connaissance et le programme créativité, activité, service (CAS) – sont obligatoires et constituent des éléments essentiels de la philosophie du programme.

I. Description et objectifs globaux du cours

La science du sport, de l'exercice et de la santé est l'une des matières du groupe Sciences du Programme du diplôme de l'IB. Elle s'intéresse essentiellement à l'étude scientifique de la physiologie, de la biomécanique et de la psychologie humaines. Les scientifiques qui travaillent dans des domaines s'efforcent de comprendre la santé et les performances physiques et mentales de l'être humain en ayant recours à diverses approches et techniques, à des expériences contrôlées et à la collaboration avec d'autres spécialistes de la recherche. Le cours de science du sport, de l'exercice et de la santé du Programme du diplôme permet aux élèves d'aborder les thématiques scientifiques d'actualité selon une approche constructive. Les élèves examinent les assertions scientifiques dans un contexte réaliste visant à susciter l'intérêt et la curiosité. L'exploration de la discipline leur permettra de développer une compréhension, des compétences et des techniques qu'il leur sera possible de mettre à profit dans leurs études et au-delà.

Le cours est organisé en trois thèmes principaux : physiologie de l'exercice et nutrition du corps humain, biomécanique, et psychologie du sport et apprentissage moteur. Ces trois thèmes sont distincts, mais ils partagent de nombreux points qui se recoupent. L'étude des similitudes et des relations entre eux constitue une composante centrale du cours.

L'apprentissage au moyen de recherches scientifiques menées en classe, sur le terrain et en laboratoire fait partie intégrante de l'expérience des élèves dans le cadre du cours de science du sport, de l'exercice et de la santé du Programme du diplôme.

En mettant l'accent sur le travail expérimental, le personnel enseignant donne aux élèves des occasions de poser des questions, de concevoir des expériences, de collecter et d'analyser des données, de collaborer avec leurs pairs ainsi que de réfléchir sur leurs résultats, de les évaluer et de les communiquer.

À travers le thème fondamental de la nature de la science, le cours a pour objectif de permettre aux élèves :

- 1. de développer une compréhension conceptuelle permettant d'établir des liens entre différents domaines de la matière et avec d'autres matières scientifiques du Programme du diplôme ;
- 2. d'acquérir et d'appliquer un ensemble de connaissances, de méthodes, d'outils et de techniques propres à la science ;
- 3. de développer la capacité d'analyser, d'évaluer et de synthétiser les informations et les assertions scientifiques ;
- 4. de développer la capacité d'aborder des situations inconnues avec créativité et résilience ;
- 5. de concevoir et de modéliser des solutions répondant à des problèmes locaux et mondiaux dans un contexte scientifique ;
- 6. d'appréhender les possibilités et les limites de la science ;
- de développer des compétences technologiques dans un contexte scientifique;
- 8. de développer la capacité de communiquer et de collaborer de manière efficace ;
- 9. de prendre conscience des répercussions éthiques, environnementales, économiques, culturelles et sociales de la science..

II. Aperçu du modèle du programme d'études

Le cours de science du sport, de l'exercice et de la santé du Programme du diplôme encourage un enseignement et un apprentissage reposant sur des concepts et favorisant la pensée critique.

Le cours de science du sport, de l'exercice et de la santé du Programme du diplôme repose sur :

- · différentes approches de l'apprentissage;
- la nature de la science ;
- différentes compétences spécifiques à l'étude de la science du sport, de l'exercice et de la santé.

Ces trois piliers sont à la base d'un programme expérimental vaste et équilibré. En progressant dans le cours, les élèves se familiarisent avec les techniques d'expérimentation traditionnelles et l'application de la technologie. Cela les aide à développer leurs compétences de recherche et à estimer l'impact de l'erreur et de l'incertitude dans une recherche scientifique. La recherche scientifique met ensuite l'accent plus spécifiquement sur les compétences reposant sur la recherche et la communication formelle des connaissances scientifiques. Enfin, le projet scientifique collaboratif étend le développement de la communication scientifique à un contexte collaboratif et interdisciplinaire, permettant aux élèves de travailler ensemble au-delà du simple cadre de la science du sport, de l'exercice et de la santé.

Tandis que la nature de la science et les trois thèmes de la science du sport, de l'exercice et de la santé constituent la base du développement de la compréhension conceptuelle, les approches de l'apprentissage et les compétences spécifiques à l'étude de cette matière aident les élèves dans leurs processus d'apprentissage pendant et après leur expérience au sein de l'IB. Tout au long du programme, les élèves ont des occasions de mettre en pratique et de perfectionner ces compétences et de les mettre en œuvre dans différents domaines d'études.

	Nombre d'heures d'enseignement recommandé	
Composantes du programme	NM	NS
Contenu du programme	110	180
A. Physiologie de l'exercice et nutrition du corps humain		
A.1 – Communication	23	28
A.2 – Hydratation et nutrition	16	22
A.3 – Réponse	8	19
B. Biomécanique		
B.1 – La génération du mouvement dans le corps	12	17
B.2 – Forces, mouvement et déplacement	11	31
B.3 – Les blessures	7	9
C. Psychologie du sport et apprentissage moteur		
C.1 – Les différences individuelles	4	10
C.2 – L'apprentissage moteur	12	12
C.3 – La motivation	8	16
C.4 – Le stress et sa gestion	5	7
C.5 – Les compétences psychologiques	4	9
Programme expérimental	40	60
Travaux pratiques	20	40
Projet scientifique collaboratif	10	10
Recherche scientifique	10	10

3

Compétences spécifiques à l'étude de la science du sport, de l'exercice et de la santé

Les compétences et les techniques que les élèves doivent acquérir tout au long du cours sont incluses dans les outils. Ces derniers favorisent la mise en application et le développement du processus de recherche dans le cadre du cours de science du sport, de l'exercice et de la santé.

Outils

- Techniques expérimentales
- Technologie
- Mathématiques

Processus de recherche

- Exploration et conception
- Collecte et traitement des données
- Conclusion et évaluation

Le personnel enseignant doit donner aux élèves l'occasion d'éprouver et de mettre en pratique ces compétences tout au long du programme. Plutôt que d'être enseignées sous forme de sujets isolés, ces compétences doivent être intégrées dans l'enseignement du programme selon leur pertinence par rapport aux sujets étudiés.

III. Modèle d'évaluation

Les objectifs d'évaluation du cours de science du sport, de l'exercice et de la santé du Programme du diplôme sont au nombre de quatre. Les élèves ayant suivi le cours de science du sport, de l'exercice et de la santé doivent être en mesure d'atteindre les objectifs d'évaluation suivants.

Objectif d'évaluation 1

Démontrer des connaissances concernant :

- la terminologie, les faits et les concepts ;
- les compétences, les techniques et les méthodologies.

Objectif d'évaluation 2

Comprendre et mettre en application des connaissances concernant :

- la terminologie et les concepts;
- les compétences, les techniques et les méthodologies.

Objectif d'évaluation 3

Analyser, évaluer et synthétiser :

- des procédures expérimentales ;
- des données primaires et secondaires ;
- des tendances, des patterns et des prédictions.

Objectif d'évaluation 4

Démontrer l'application des compétences nécessaires pour mener des recherches judicieuses et éthiques.

Aperçu de l'évaluation

Type d'évaluation	Modalités de l'évaluation	Durée (heures)		Pondération de la note
		NM	NS	finale (%)
Externe		3	4,25	76
Épreuve 1	Épreuve 1A – Questions à choix multiple Épreuve 1B – Questions fondées sur des données et questions sur un travail expérimental	1,5	1,75	36
Épreuve 2	Questions à réponse brève et à réponse développée	1,5	2,5	40
Interne		10		24
Recherche scientifique	La recherche scientifique est une tâche ouverte dans le cadre de laquelle l'élève collecte et analyse des données afin de répondre à une question de recherche de sa propre invention. Le résultat de la recherche scientifique sera évalué sous la forme d'un rapport écrit, dont la longueur maximale est de 3 200 mots.	10		24

À propos de l'IB: depuis plus de 50 ans, l'IB se bâtit la réputation d'offrir des programmes d'enseignement stimulants et de grande qualité, qui développent une sensibilité internationale chez les jeunes et les préparent à relever les défis de la vie au XXIe siècle et à contribuer à la création d'un monde meilleur et plus paisible.

Pour de plus amples informations sur le Programme du diplôme de l'IB, rendez-vous sur la page https://ibo.org/fr/dp. Les guides pédagogiques peuvent être consultés sur le Centre de ressources pédagogiques de l'IB ou achetés sur le site du magasin de l'IB: https://ibo.org/fr/new-store.

Découvrez comment le Programme du diplôme de l'IB prépare les élèves à réussir à l'université en consultant la page https://ibo.org/fr/university-admission.