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This literature review forms the first stage of a project aiming to review and improve the 
International Baccalaureate’s (IB’s) Statistically Recommended Boundary (SRB) setting 
procedures.  The ultimate goal of the project is that, ideally, SRBs would provide an accurate 
estimate of where grade boundaries should be that rarely needs adjusting (or at least, needs more 
minor adjustments applying than current SRBs do). 

In light of this, this literature review aims to accomplish the following: 

1. Map out the ‘universe’ of statistical standard setting procedures, including: 
a. Any requirements for them being able to be utilised 
b. Any advantages and disadvantages relative to other approaches 

2. Make initial judgments as to which procedures might be most suitable or unsuitable for the 
IB’s contexts 

A wealth of literature was reviewed to gather information on the statistical standard setting 
methodologies in use.  Broadly they fall into one of two categories, score equating and prediction-
based approaches.  We summarise the techniques covered by each category, including but not 
limited to: 

• Score equating 
o Basic equating techniques (mean, linear, equipercentile, etc) 
o Smoothing techniques 
o Nonequivalent groups designs 
o Item response theory 

• Prediction-based 
o Ways of deriving a prediction 
o External indicators of cohort differences 

• Ways of combining multiple approaches 

Based on this, we draw some initial conclusions about the standard setting approaches likely to be 
viable (or not) for the IB’s contexts.  Prior attainment-based approaches seem infeasible due to a 
lack of such information, whilst nonequivalent groups designs are also likely impractical since 
anchor items would compromise the security of IB’s assessments. 

This leaves, to generalise, three broad approaches which seem promising for the IB: 

a. Basic equating techniques 
b. Concurrent attainment approaches 
c. Approaches seeking to maintain the prior outcome (i.e., via common centres) 

Basic equating techniques, as a whole, are suitable in situations where the two cohorts are 
comparable in ability.  However, only around half of IB’s contexts meet this assumption.  It is worth 
noting that basic equating approaches can be applied in almost any circumstance (they need only 
a small sample size), which might mean that in some cases they are the only viable option.  The 
question is whether it is advisable to do so (i.e., if cohorts are likely to be dissimilar), or whether it 
would be preferable to rely on judgemental approaches alone.   

Concurrent equating approaches like the Instant summary of achievement without grades (ISAWG) 
are powerful, and are suitable for the IB’s programmes due to their featuring a broad range of 
subjects.   Further, it offers (by some margin) the most convincing equating approach for some of 
the most awkward contexts, including very small subjects, those with complete cohort change, and 
completely new subjects.  However, ISAWG approaches are extremely complex, with a huge 
wealth of available options and modifications (even when compared to the other approaches in this 
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paper).  It seems likely that ISAWG would be a method that can offer solutions for IB’s most 
challenging contexts, but would require a substantial amount of effort to adequately trial and 
implement it – effort which might be disproportionate to the benefits it offers.  The approach also 
has other drawbacks, being tricky to implement and a black box in terms of ease of explanation to 
laypersons. 

Approaches seeking to maintain the prior outcome for a subset of the cohort (such as the ‘common 
centres’ approach) are a well-established means of attempting to account for cohort changes that 
is viable as long as there is a large enough cohort, and sufficient centres taking the subject from 
one year to the next.  Whilst not as strong of a method as prior attainment for maintaining 
outcomes, it is still superior to many other approaches as it aims to account for any change in 
cohort ability over time.  It is also appropriate in just about all of IB’s contexts, with the exception of 
very small cohorts and completely new subjects (though there is the possibility of using common 
centres to link to a similar existing subject, dubious as this may be). 

Later stages of the project can draw upon this review to determine the approaches which are 
worthwhile carrying out further modelling on to evaluate their appropriateness for the IB’s varied 
awarding contexts. 
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Before delving into the specifics of individual statistically driven standard setting approaches, it is 
important to set the scene and discuss key terms and concepts. 

2.1. Criterion- and norm-referencing 
Standard setting is the process of assigning thresholds, cut-scores or grade boundaries to 
assessments, with the aim of ensuring that only the candidates that deserve to achieve a particular 
grade or status are allocated it.  There are, broadly speaking, two different paradigms for setting 
standards in assessment (Bond, 1996), which we initially define to contextualise the subsequent 
discussion. 

The first is criterion-referencing.  In this paradigm, a standard is linked to a particular criterion (or 
several criteria).  This approach is well-suited to vocational or practical qualifications, and is often 
used in such cases.  For instance, in a practical medical assessment a doctor may be required to 
be able to: administer CPR, accurately measure medicine volumes, and carry out procedures like 
injections and catheter removals.   

From another point of view, in a criterion-referenced system a candidate must be able to 
demonstrate competence in the criteria in order to be awarded a particular status or grade.  Note 
that whilst many vocational and practical assessments are pass/fail in nature, this is not an 
inherent feature of criterion-referencing.  It is possible for the criteria for different grades to relate to 
different levels of competence in less binary ways, such as perhaps “carry out an injection safely”, 
as compared to “carry out an injection safely whilst ensuring the patient is comfortable”. 

The second key paradigm is norm-referencing.  In this paradigm, a standard is linked to a group 
norm, such as ‘the top 10 per cent of the national cohort’ – who might be allocated the top grade.  
The key distinction from criterion-referencing is that there is no explicit link to candidates’ level of 
competence in a norm-referenced system.   

Norm referencing is often utilised in national systems where there is a need to stream or select 
candidates based on their level of performance but there are a finite number of places available in 
the next stage of education, as it helps ensure a relatively stable number of candidates achieve 
each status or grade.  Ultimately however, most education systems and assessments which focus 
more on norms tend to use somewhat of a mixture of norm- and criterion-referencing, as it is 
generally undesirable to have no link to a level of competence whatsoever. 

Understanding these concepts is important in order to understand how IB’s current approach and 
several other statistical standard setting techniques function.  As mentioned below, the IB’s current 
standard setting approach is weak criterion-referencing, but its SRB setting methodology is an 
example of pure norm-referencing. 

2.2. Standard setting and maintaining 
In the literature a key distinction is between standard setting and standard maintaining.  Standard 
setting is the process by which the threshold of passing (or achieving at a particular level) on an 
assessment is agreed upon – and this is an exercise that cannot be done statistically.  Statistics 
and statisticians simply do not know what the appropriate level of knowledge (for instance) a 
qualified medical professional should have, or what level of competence is worthy of a grade 7 in 
Geography.  Only subject experts can determine this, via standard setting procedures.  A myriad of 
such approaches exist (Baird and Scharaschkin, 2002; Benton & Elliot, 2016; Black and Bramley, 
2008; Bramley and Gill, 2010; Curcin et al, 2019), but the focus on specifically statistical standard 
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setting methods in this work means that only approaches which do not utilise any form of expert 
judgement or qualitative input are within the review’s scope.  

This means that this review can realistically only focus on standards maintenance activities, which 
are chiefly statistically based1.  A key point to bear in mind is that this inherently means that an 
initial standard must already be defined within a given subject in order for statistical approaches to 
be able to function.  If the IB was a new organisation just beginning to deliver assessments, it 
would not be feasible to use statistics to set the standard purely using statistics. 

There are broadly two different schools of standards maintenance activities in terms of their 
underlying operation: 

• Score equating approaches 
• Prediction-based approaches 

Score equating approaches function by working out what mark on one assessment is equivalent to 
another mark on a different assessment; equating one mark to another.  In the IB’s context, this 
would be “what mark on this year’s assessment is equivalent to the grade boundary mark on the 
prior year’s assessment” in most cases. 

Prediction-based approaches still produce the same result – a mark on one assessment that is 
notionally equivalent to that on another, but do so via different means.  They rely on some external 
measure of cohort ability to ‘predict’ how well the current cohort should do relative to the previous 
one, i.e. that 10 per cent of candidates should achieve a 7, 20 per cent a 6, and so on.  Based on 
the proportion of candidates expected to achieve each grade according to the prediction, 
boundaries can be set to best ‘meet’ the predictions.  The IB’s current norm-referenced SRB 
setting procedure is a prediction-based method, with the inherent assumption that the cohort’s 
ability is unchanged relative to the prior year (and thus that similar proportions of each grade 
should be awarded). 

2.3. Classical test theory and item response theory 
There are broadly two dominant theories of psychometrics (the science of measurement) in an 
educational assessment context.  We define them here as some of the statistical standard setting 
techniques described in this paper are founded in each theory. 

Classical test theory (CTT) is, as the name suggests, the ‘original’ theory of measurement codified 
by Lord and Novick (1968).  It is founded on the belief that a candidate’s mark on an assessment 
has two components; a ‘true score’ and an error component.  In other words, if a candidate took 
the same assessment day after day (with their memory somehow wiped between) they would not 
always achieve the same mark – this is the error component around their true score coming into 
play.  Readers are likely to be familiar with some of the key statistics arising from CTT, even if they 
do not realise they are CTT statistics – item facility indices, discrimination indices, and Cronbach’s 
Alpha. 

CTT is mark focused – a candidate’s overall ability level is measured by their total mark on the 
assessment, which makes disentangling it from the error component very challenging.  Being mark 
focused also leads to arguably its biggest shortcoming – that it is not possible to disentangle 

 

 
1 Note that whilst one scenario on the prior page “new subjects” generally lacks statistical data, there are a very limited 
number of approaches which can be used to statistically carry forward the standard from other comparable subjects into a 
new qualification.  Arguably this is standard setting, but in all other cases only standards maintenance is considered in this 
paper. 
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candidate ability from item difficulty.  For instance, if an item is responded to correctly by many 
candidates, is it very straightforward, or are the candidates just very able? 

Item response theory (IRT) by contrast, does away with raw marks and moves both measurements 
of item difficulty and candidate ability onto a different scale2 (Rasch, 1933).  Key to the theory is 
the relationship between the two this establishes – a candidate with a given level of ability has an 
exactly 50 per cent chance to get an item of the same difficulty level correct.  This focus on item 
rather than overall assessment performance is what gives IRT its name. 

Crucially, through placing these two metrics onto the same scale (but not a raw mark scale), IRT 
disentangles candidate ability and item difficulty, meaning psychometricians can definitively say 
whether items are straightforward or candidates are able.  This is a key advantage for many test 
equating scenarios where it is useful to be able to establish what marks on one assessment form 
are equivalent to marks on another form.  Though many techniques exist which accomplish the 
same in a CTT framework too, IRT inherently lends itself to test equating and other scenarios, and 
permits some specific approaches not possible in a CTT framework that might be valuable in some 
situations. 

 

 
2 Known as a logit scale, and often referred to as theta in IRT publications. 
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3.1. IB’s current standard setting procedures 
The International Baccalaureate (IB) is a major international nonprofit foundation which offers a 
suite of educational programmes to students aged between 3 and 19.  These educational 
programmes are alternatives to “in country” programmes, with their own curricula and 
assessments.  As a result, one of the myriad roles for the IB in their programmes’ running is in 
setting and maintaining the standard of these assessments, in order to ensure fairness and 
comparability from year to year.  IB’s standard setting is done via a process called ‘grade 
awarding’. 

Historically the IB’s grade awarding model can be described as “weak criterion referencing”.  In 
other words, a balance of the criterion (competence in the domain at hand) with how candidates 
have performed in prior years is used to set the standard.  The following diagram (IBO, 2018) 
shows the three key sources of information that input into IB’s grade awarding process. 

 
Figure 1: IB’s current inputs into grade awarding activities 

The first input into grade awarding is ‘outcome statistics’, which uses data from the prior and 
current session to ask the question “If the prior cohort had sat this year’s exam, what grade 
boundaries would be needed to maintain the same overall grade distribution?”.  This input is 
entirely quantitative in nature, and is used to derive statistically recommended grade boundaries 
(SRBs) for key judgemental grades (3, 4, and 7).  Notably, this input is actually norm-referenced as 
opposed to criterion-referenced, as in the absence of other inputs would result in a maintenance of 
outcomes from year to year. 

The criterion-referencing element of IB’s grade awarding is introduced by the other two inputs into 
the process, views on assessment performance from key personnel, combined with evidence from 



 |9| 
 

Second submission – v1.1 

scrutiny of candidate scripts.  These qualitative inputs are used by the awarding committee to 
decide whether the difficulty of the assessment and/or the ability of the cohort has changed relative 
to last year, and to adjust the SRBs to generate final grade boundary positions. 

3.1.1. Issues with current SRB setting procedures 
The current norm-referenced SRB procedure is reliant on two factors remaining stable over 
consecutive session in order to be completely valid: a) the difficulty of the assessment remaining 
constant relative to the prior session, and b) the ability of the cohort remaining constant relative to 
the prior session.  Whilst it is likely that in many of the IB’s awarding contexts this is the case, in 
many others it will not always be – and further to this, in some contexts there will be no prior 
session to benchmark against. 

When the assessment’s difficulty and the cohort’s ability are not stable over time (or there is no 
prior session to refer to) the current purely norm-referenced SRB setting method ceases to provide 
the best possible estimate of where grade boundaries should be placed.  Whilst a comprehensive 
review of the IB’s awarding contexts forms a later stage of this project, an initial scrutiny of some 
awarding contexts the IB faces makes plain that these two elements remaining stable is not the 
case in many contexts.  Below we list some common contexts and how they violate these 
assumptions, leading to SRBs potentially being inaccurate. 

1. Large stable subjects (whilst large cohorts are likely to be stable, even the best constructed 
assessments tend to vary in difficulty slightly over time) 

2. Small subjects (small cohorts are inherently less stable in ability over time) 
3. Growing subjects (the ‘new’ centres starting a subject are likely to cause a shift in cohort 

ability profile over time) 
4. Changing curriculum or assessment models (the assessment’s difficulty may change with a 

shift to a new model; the cohort may also initially struggle with a new assessment reflecting 
a drop in effective ability) 

5. New subjects (in these cases there is no prior data on which to base SRBs) 

3.2. Aim of this literature review 
This literature review forms the first stage of a project aiming to review and improve the IB’s SRB 
setting procedures.  The aim of the project is that, ideally, SRBs would provide an accurate 
estimate of where grade boundaries should be that rarely needs adjusting (or at least, needs much 
more minor adjustments applying than current SRBs do). 

In light of this, this literature review’s aims are as follows: 

3. To map out the ‘universe’ of statistical standard setting procedures, including: 
a. Any requirements for them being able to be utilised 
b. Any advantages and disadvantages relative to other approaches 

4. To make initial judgments as to which procedures might be most suitable or unsuitable for 
the IB’s contexts 

Later stages of the project can then draw upon this review to determine the approaches which are 
worthwhile carrying out further modelling on to evaluate their appropriateness for the IB’s varied 
awarding contexts. 
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As outlined above, score equating focuses on converting marks on one assessment form into the 
scale of another (or sometimes onto a common scale).  There are a myriad of ways to do this.  In 
this section we will outline various score equating methods, starting with the most straightforward 
and moving on to more complex ones.  The many equating techniques are however often 
overlapping and somewhat confusing; we have aimed to lay out this section in as logical a fashion 
as possible, and not to overwhelm the reader with formulae or very technical details.   

4.1. Basic equating techniques 

4.1.1. Mean equating 
The simplest form of score equating, mean equating assumes that there is a constant difference 
between two assessment forms across the mark scale.  I.e. a mark of five on one form equates to 
seven on the second form; a mark of 42 on the first would also equate to 44 on the second.  As the 
name suggests, the constant shift applied in mean equating is determined by the difference 
between the means of candidate marks on the two assessment forms. 

Plainly, this is an extremely simple form of equating; the operation is a simple addition or 
subtraction – this is its main advantage.  As readers are likely already conscious of however, there 
are many assumptions inherent in such an approach.  The main assumption is that the difference 
in difficulty between two assessment forms can be described with a single constant.  I.e. that it is 
not the case that five actually equates to six, and 42 to 44. 

Secondly, it assumes that the ability of candidates sitting each assessment form is identical.  If the 
same cohort is indeed sitting both forms being equated then this substantial assumption can be 
eliminated, but this is often not the case. 

Thirdly, it is largely only applicable when the total number of marks of both assessment forms 
being equated are very similar (if not identical).  This is because converted marks at the extremes 
of the range will exceed the limits of the marks available on the assessment in mean equating (i.e. 
if the max mark on both forms is 100, then a mark of 100 on the first form would equate to 102 on 
the second).  This is a minor problem in and of itself that requires some form of capping rule to 
manage – but if the total number of marks of one form were (for example) 50, the equating 
exercise would be completely invalid, as half the marks on the higher total form would have no 
equivalent on the lower total form. 

4.1.2. Linear equating 
With mean equating based on how the mean of the mark distribution on two assessment forms 
differ, the next logical extension of the method is to also account for the spread of marks around 
each mean.  This essentially means that a constant difference between marks on two assessment 
forms is not required. 

Technically speaking, this is accomplished using the SD of marks on each assessment form; 
marks +1 SD from the mean on each form are set as equivalent, marks -1 SD from the mean on 
each form are set as equivalent, marks +2 SDs from the mean are set as equivalent, and so on. 

This approach is still relatively straightforward to explain and implement, and evades the key 
assumption of constant difference made in mean equating – which is important as the distribution 
of marks on different assessment forms is rarely identical in practice.  However, it still falls foul of 
assuming candidates sitting both assessment forms are of equivalent ability, requiring capping of 
extreme values, and being inadvisable if the two forms have differing total number of marks. 
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Notably, for both linear and mean equating the greatest equating accuracy occurs near the mean 
(Kolen and Brennan, 2014) – rendering this a strong method for assessments with a single cut 
score that candidates tend to cluster around.  For graded qualifications or vocational ones where 
the standard of candidates tends to be far higher than the cut score, equating accuracy near the 
mean is much less of a useful feature.  

4.1.2.1. ANCOVA equating 

A modification to the linear equating approach uses an analysis of covariance (ANCOVA) to 
attempt to mitigate a key assumption – that the candidates sitting each assessment form are of 
similar ability (van Onna, Jongkamp & Lamprianou, 2021).  It does this through the use of 
background variables; some examples of which might be: gender, length of time in education, type 
of centre, and so forth.  If a particular background variable is associated with stronger or weaker 
performance, then an ANCOVA can ‘correct’ for this. 

This means that if (for instance) a particular centre type is associated with weaker performance, 
and more candidates from that centre type sit one assessment form, then we would expect lower 
marks on that form as a result – and in ANCOVA the equating relationship between forms will 
adjust to account for this.  As such this approach is valuable in cases where there are known group 
differences in performance on an assessment (and data on group membership is readily available), 
and the proportion of candidates from said groups tends to vary from sitting to sitting. 

There are however some drawbacks to utilising ANCOVA to try to account for differences in cohort 
ability.  Firstly, it only achieves its aim if performance variations are actually explained by 
background variables available to the analyst.  Secondly, it introduces a new assumption that the 
relationship between background variables and ability are consistent across both cohorts.  Using 
the above example, if the centre type that performs poorly on one form actually performs very well 
on the second, then the approach would be invalidated. 

The main drawback however is an ethical one; predicting groups’ performance based on their 
group membership can be problematic.  If for instance the above example did come to pass – a 
centre type we expected to perform poorly actually performing quite well, then we would have 
effectively deflated candidates’ outcomes on the second paper unfairly.  It is easy to see how this 
becomes problematic if more sensitive characteristics are used in the approach.  The example of 
2021’s extraordinary awarding session in the UK, where the statistical approach used the centre 
candidates attended as a key factor in the grades awarded in the absence of exams, serves as a 
cautionary tale about the public perception of similar uses of background variables (Priestly et al, 
2020). 

4.1.2.2. Resit analysis 

Another novel adaptation of a linear equating methodology is resit analysis (van Onna, Jongkamp 
& Lamprianou, 2021).  Here, if there is a sufficient volume of resitters between assessment form A 
and B, these candidates being common to both assessment forms can be used to gain some 
information about the relative difficulty of the two forms.  Again, this approach is useful in 
attempting to account for variations in the difficulty of forms, which is assumed in typical linear 
equating. 

Here the assumption is that, in typical circumstances, candidates resitting an assessment will not 
(overall) have reduced in ability between sit A and sit B.  They may not have progressed much, but 
they should not have fallen backwards in terms of overall competence (Covid-19 being a notable 
violation to this generally safe assumption).  If we accept this, then one can consider the relative 
performance of the cohort on both assessment forms and factor this into the model to obtain a 
lower limit of the true difference in difficulty between the forms.   
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As an example, if the cohort achieved an average of 24 marks on form A, then resat and scored an 
average of 26 marks on form B, if we assume little progress has been made by the resitters then 
form B is two marks easier than form A.  This is the aforementioned lower limit – we would 
conclude from the resit analysis that form B is no more than 2 marks easier than form A. 

Obviously this is an approach which needs to be coupled with others, as it does not give a true 
estimate of equated values, just a bound for them.  This is a drawback, but it does also mean that 
there are few other issues with this approach in and of itself; it is reasonable to use it to derive a 
lower bound, assuming there has not been a substantial slip in ability between sits.  A more 
pragmatic reason for not using the approach is that often large numbers of resitters are not 
available in equating situations (and they may also be unrepresentative of the cohort as a whole). 

4.1.3. Equipercentile equating 
Notably, the relationship between marks on two assessment forms equated with mean or linear 
equating can be described with a straight line (mean equating changes the intercept, linear 
equating also adjusts its slope).  Equipercentile equating differs in that it describes the relationship 
via a curve rather than a straight line.  This means that assessment form A could, instead of 
consistently being harder/easier than assessment form B depending on the difference in the mean 
mark on each form, be harder at some points on the mark range but easier at others. 

The way this is accomplished uses the percentiles of candidates that achieve a given mark to link 
them across forms; if 20% of candidates on form A achieve a mark of 12 or more and 20% of 
candidates on form B achieve a mark of 15 or more, then these two marks would be considered 
equivalent under equipercentile approaches.   Challenges arise when percentiles do not exactly 
match (as is common with integer marks), but the method gets around this through treating the 
mark distribution as if it were continuous and effectively finding the closest percentile match for a 
given mark. 

Using a curve rather than a line to equate has clear advantages.  Consider an assessment form B 
which, relative to assessment form A, has 10 items far easier than any on A, 80 of comparable 
standard, and 10 far harder than any items in A.  This is not an unrealistic scenario, and in such a 
case it would be valid to want to treat the lowest 10 marks on B as easier than those marks on A, 
but the highest 10 marks as harder.  In a nutshell, the increased complexity of the relationship 
between assessment forms in equipercentile approaches allows for better modelling of possible 
scenarios in equating.  It is useable when total number of marks differ, and prevents the capping 
issues present in mean and linear equating.  However, a key assumption of the prior two methods 
is still present – that the ability of the cohort sitting each assessment form is equivalent. 

It’s also worth noting that whilst linear and mean equating might seem inferior to equipercentile 
equating, they are actually preferable within their niches, however unlikely these situations are to 
emerge in reality.  If two assessment forms’ distributions only vary by position (and spread for 
linear) then mean equating is ideal – not only does it follow the principle of Occam’s razor, but it 
introduces less random error than equipercentile equating (Kolen and Brennan, 2014). 

4.1.3.1. Circle-arc equating 

Circle-arc equating is an unusual method of equating that does not quite fit into the structure of this 
paper.  We discuss it here because it is a fairly simple equating method that is proposed as a 
potential alternative to equipercentile equating.  Livingstone and Kim (2009) developed this method 
as an approach that, whilst lacking a theoretical underpinning like most approached, nonetheless 
produces results comparable to those of many other equating approaches. 

Per the name, a circle’s arc is drawn through three points on a graph of the marks on form A and 
form B.  The first two points are the maximum and minimum marks of each assessment form, and 
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the third the midpoint of the assessment form (usually the average mark achieved3).  The curve 
plotted serves to describe an equating relationship between marks on the two forms.  A circle 
rather than a curve is used because it is computationally simpler and more closely represents the 
curves emerging from equipercentile equating with large groups.  An example of this is shown in 
the Figure below. 

 
Figure 2: Example of circle-arc equating two assessment forms – from Livingstone & Kim (2009; pg 
335) 

This method has several key benefits.  First, it is very robust with small samples, as the main 
datapoint underpinning it is the mean (like the mean equating method).  However, unlike mean 
equating it is accurate in the upper and lower reaches of the mark distribution, a key advantage for 
assessments where accuracy across the range of marks is needed.  And as stated above, it 
mimics the results of complex approaches like equipercentile equating but is much more 
straightforward to implement and explain; it has also performed well (and better than many other 
approaches) in operational settings (Livingston and Kim, 2010; LaFlair et al, 2017). 

Its main downside is the aforementioned lack of theoretical underpinning.  If one is asked to 
explain “why are we equating in this manner” there is not really a logical explanation to give other 
than “it happens that it works like other approaches, but it’s easier”.  This does not detract from its 
accuracy, but does impact on its defensibility somewhat. 

 

 
3 In nonequivalent groups designs (see below) a chained equating approach must be used to equate the midpoints of the 
score distributions on each test form. 
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4.1.4. Visualisation of basic equating techniques 
Understanding the nuances of various equating methods can be challenging via the medium of 
text.  For this reason we reproduce below a figure from Albano (2016) which neatly visualises how 
each of the above methods links marks on one assessment form to those on another. 

 
Figure 3: Example linking functions – from Albano (2016; pg. 22) 

This graph can be read as showing a mark on one form (form A) on the x axis, and the mark on the 
second form (form B) on the y axis.  The lines each show what different equating methods consider 
the marks on each form that are equivalent to one another. 

The red ‘identity’ line simply represents the x = y line, i.e. considering one mark on form A 
equivalent to the same mark on form B.  It is presented solely for the purposes of comparison with 
other approaches. 

The lime ‘mean’ line simply adjusts the intercept of the identity line – shifting it up higher on the 
graph.  The green ‘linear’ line however adjusts both the slope and intercept of the identity line. 

The blue ‘circle[-arc]’ line, as outlined above, is a neat circle’s arc.  The purple ‘equip[ercentile]’ line 
however is a curve, allowing it to suggest that at the very highest marks on form A are no longer 
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equivalent to higher marks on form B (which can be observed where the purple line drops below 
the red one). 

4.2. Smoothing techniques 
One of the issues identified with equipercentile equating in the literature (Kolen & Brennan, 2014) 
is that even with large sample sizes (a few thousand), when the relationship between marks on 
form A and B is plotted, it can be quite jagged.  This is attributable to only a sample of the 
population’s data being available (even when working with assessments sat by full national cohorts 
we could consider “all past and future national cohorts” the population); presumably if we did have 
the full population’s data, the relationship would smooth out in a similar manner to sampling 
increasing numbers of individuals from normal distributions.   

Smoothing techniques are an attempt to mitigate this issue by using interpolation to ‘even out’ the 
unevenness in a distribution in an attempt to better approximate the population’s statistics4.  Of 
course, this is contingent on the assumption that the smoothed distribution does indeed better 
represent the population distribution – which we can never be certain of; in some cases 
maintaining the original uneven distribution may actually be better.  An example of smoothing a 
mark distribution from Kolen and Brennan (2014) is presented below to provide visual reference. 

 
Figure 4: Example smoothing of a mark distribution – from Kolen and Brennan (2014, pg. 75) 

 

 
4 Note however that smoothing cannot resolve issues caused by equating based on an unrepresentative cohort; the 
smoothed distribution which emerges will always mimic the original unsmoothed one (Puhan, 2011). 
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In the figure, the actual mark distribution is shown with white squares, and appears quite uneven 
particularly in the 15-25 region.  The black rhombuses show the smoothed mark distribution, which 
is much less ‘jagged’. 

Kolen and Brennan (2014) make the distinction between pre-smoothing and post-smoothing; 
smoothing the raw mark distributions, and smoothing the equipercentile distributions respectively.  
There are a range of different pre- and post-smoothing techniques described in detail in their book 
(chapter 3), which are broadly similar in outcome.  One notable feature of pre-smoothing methods 
is that statistical tests emerge which aid the assessment of how useful the smoothing is.  Broadly if 
smoothing is deemed of interest, it would be fruitful to model various approaches and assess which 
is best for the situation at hand. 

We elect for the sake of brevity to summarise arguably the most common smoothing method in the 
literature, kernel equating, below. 

4.2.1. Kernel equating 
Kernel equating makes use of both pre-smoothing methods and post-smoothing ones (Holland and 
Thayer, 1989; von Davier et al, 2004).  Notably, it smoothly interpolates between discrete mark 
totals, which helps in solving the issue of (for instance) a substantial proportion of the cohort 
stacking up on particular mark points, making it hard to utilise equipercentile methods to equate.   

More technically, the approach initially uses a log-linear model of the "true" total mark distribution 
in the population to smooth out the unevenness in the sample data that is taken to be a result of 
sampling error.  Next, it finds the probability (percentage values) of a random person drawn from 
the population having each mark.  Then the discrete data is turned into continuous data, a process 
known as continuization, by drawing a gaussian filter over the data points to interpolate between 
them, allowing equipercentile equating to be used on this continuous dataset.  As with most of the 
broad approaches detailed in this paper, there are many minor adjustments which can be made to 
a kernel approach that may improve its performance in some situations (Liang and von Davier, 
2014). 

This process is a very elegant solution to the discreteness of total marks, with the resulting outputs 
being quite intuitive (even if the method sounds complex).  Arguably, most people would agree that 
it is better than a linear interpolation between marks.  As outlined above, it is however difficult to 
say which of the various smoothing methods is ‘best’ – but kernel is certainly one of the most 
developed and popular in the literature, for what that is worth.   

However, any form of smoothing (and particularly kernel) requires in-depth statistical knowledge to 
understand and specialist software to carry out, and is therefore unlikely to be scaleable to entire 
suites.  Instead it seems like a potentially useful tool for a handful of subjects which would benefit 
from smoothing the most. 

4.3. Nonequivalent groups 
As should be apparent from our discussion of the three most basic equating approaches, mean, 
linear and equipercentile, all fall foul of the assumption that the cohorts sitting both forms are 
equivalent in ability.  This is a major issue for many examinations, particularly those high-stakes 
ones which are used for onward selection where failing to maintain the correct standard is a 
fairness issue (Alberts, 2001).  Nonequivalent groups designs, as the name suggests, use a range 
of techniques to eliminate this assumption, and as such are invaluable in situations where one 
cannot be sure of each cohort’s ability being comparable (Kolen and Brennan, 2014).  The 
distinction between ‘linking’ and ‘equating’ used in some literature comes into play here; linking is 
typically used to refer to equating situations where group A and B’s abilities being comparable is 
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assumed (the approaches discussed in prior sections could therefore be termed linking 
approaches).   

All are underpinned by the use of ‘common items’ – some set of items sat by both the distinct 
group of candidates who took form A and the group instead sitting form B.  These can be either 
embedded within the paper itself or sat as an external anchor assessment.  How differently cohort 
A and B perform on the common items is used as a proxy for differences in their overall ability, 
thus allowing nonequivalent groups approaches to address the assumption of equivalent ability by 
taking this into account during the equating process.  How each method accomplishes this varies 
slightly, however. 

The use of common items does however introduce a key assumption – that performance on the 
common items accurately reflects performance on the non-common items in each form being 
equated.  In other words, if cohort A does worse on the common items than cohort B, it is 
presumed that cohort A is weaker and will score lower on the non-common items than cohort B 
would have.  If however, cohort A is actually stronger overall but just has particular difficulty with 
the specific common items, then this assumption will be violated.  The slightly concerning factor 
here is that there is no quantitative way to tell whether this is the case in a nonequivalent groups 
design (qualitative scrutiny might flag up unusual performance patterns). 

As a result, it is of critical importance to try and mitigate the risk of this occurring.  The best practice 
for this (Cook and Paterson, 1987) is essentially to ensure that the common items are as 
representative as possible a sample of the assessment as a whole; they must sample the same 
content areas, not just focus on one or two; they must sample the full breadth of item types 
included in the assessment; they should be spaced at intervals throughout the assessment(s) and 
in comparable positions in each of the two forms being equated; and there must be sufficient 
common items to reliably form a link between the two forms5.   

It is also important when using common items to review their performance and consider de-
anchoring any which behave particularly differently between the two cohorts (i.e. treat them as if 
they were different items rather than as an anchor).  For this reason it is useful to have a 
reasonable number of anchor items to manage any such attrition – Kolen and Brennan (2014) 
suggest 20% of the assessment length for assessments of 40 items or more, or a minimum of 30 
items if this is lower than 20% for very long assessments.  However this is a lower limit – if more 
items than this are needed to meet the above criteria of content and item type sampling within the 
anchors, then a higher proportion should be used. 

Being able to use concurrent items is also not always a given, particularly in high-stakes 
assessments where any exposure of items is undesirable.  In these situations one may need to fall 
back on a more simple equating design such as those outlined above, or utilise one of the 
prediction-based approaches discussed below. 

4.3.1. Tucker, Levine and Braun/Holland 
The Tucker, Levine, and Braun/Holland equating approaches are all discussed together in this 
section, as they can be used in similar circumstances and accomplish similar things.  These three 
approaches are applicable to mean, linear and circle-arc equating (with linear being the situation 
they are most commonly applied) – but not equipercentile – and can reasonably be characterised 

 

 
5 Some recent work by Furter and Dwyer (2020) does however suggest that with IRT methods (see below) it might be 
preferable to have more anchor items at a similar same level of demand to the cut score – in order for IRT models to be 
have more ‘information’ about the items at that crucial region. 



 |18| 
 

Second submission – v1.1 

as ‘variant approaches which facilitate nonequivalent groups designs’.  Kolen and Brennan (2014) 
offer some guidance on the various micro reasons one might elect to pick one rather than another. 

The Tucker approach (Gulliksen, 2013) is a regression-based approach, and as such assumes a 
linear relationship between marks on each assessment form; if this is violated it may not be 
appropriate and the Braun/Holland (Braun, 1982) approach is likely to be more valid.  There are 
several sub-variants of Levine approaches (Levine, 1955), with Levine observed score equating 
notably being more suitable if there is a difference in ability between cohort A and B.  Levine 
approaches however must see marks on both forms correlate well in order to remain valid.  There 
are many further statistically convoluted tweaks that can be applied to these approaches (for 
instance, Chen and Holland, 2010, who integrated kernel smoothing with the Tucker and Levine 
approaches). 

One notable feature of the Tucker approach is that it can accommodate very small samples of as 
few as 20-80 candidates with some modifications (though circle-arc equating in a nonequivalent 
groups setting performs similarly; Babcock, Albano and Raymond, 2012).   

4.3.2. Chained equating 
‘Chained’ is one of the most commonly used terms to describe equating, and can be applied to a 
few different approaches we have discussed already.  In short, chained equating modifies other 
equating approaches by carrying it out in several steps, which is possible thanks to the use of 
common items in nonequivalent group designs.  First marks on form A’s unique items are linked to 
marks on form A’s common items (or to the anchor assessment those sitting form A took).  Then 
the common item marks for the population sitting form A and form B are equated6.  Finally, these 
equated marks on the common items are again converted into marks on form B itself.  Each 
equating step is visualised in Figure 2 below. 

 
Figure 5: Visualisation of chained equating 

The two equating approaches where chaining is most frequently applied are chained linear and 
chained equipercentile (often abbreviated to CEPE) – though chained mean and circle-arc are also 
possible (Peabody, 2020).  As we have already discussed the basic versions of these approaches 
above, we will not repeat that explanation here; suffice to say that chained linear equating equates 
the means and SDs of marks on each of the four elements in Figure 2 above in turn, whilst CEPE 
uses the percentile ranks of candidates on each element as the core of its approach. 

Notably, there are two key differences between CEPE and the other nonequivalent groups 
approaches (chained linear included) in terms of their outputs.  Firstly, CEPE inherently has higher 
estimation error than the other approaches, which would generally mean it is less ‘good’ at finding 
the most valid equated set of marks between two assessment forms.  However, the second factor 

 

 
6 Oh and Moses (2012) investigated whether equating the form B scores to the form B common items (rather than the 
inverse way round) had any impact on the result when using CEPE; it was established that inversing the direction of this 
final step made almost no difference. 
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is that the other approaches assume that the two cohorts being equated are similar in ability7 
(somewhat ironically, given that a main benefit of nonequivalent groups designs is to allow for 
accounting for changes in ability).  When similar group abilities is not the case, CEPE tends to 
more than compensate for its higher native estimation error and render it the superior method.   

Kolen and Brennan (2014) offer the following rules of thumb for judging when each group’s abilities 
are different enough that CEPE becomes preferred.  Mean differences between groups of .3-.5 
SDs or more on the common items are troublesome for most approaches, as are cases where the 
ratio of group SDs on the common items is <.8 or >1.2. 

As a result, the decision to use CEPE rather than other approaches comes down to the question 
“are the cohorts likely to differ markedly in ability?”  If yes, then CEPE is the best option of the 
nonequivalent group designs.  This becomes tricker when an entire suite would prefer a 
standardised approach – a factor the literature rarely accounts for.   

Notably, CEPE is specifically utilised for cross-tier equating purposes in GCSEs in the UK, whilst 
the vast majority of standard setting is conducted via a different approach we will discuss at length 
later (Ofqual, 2017).  This is both due to it being one of the few situations where there are common 
items between assessment forms in the GCSE suite, and tiered exams being a textbook example 
of cohorts with very different ability, rendering many other approaches inadvisable. 

4.4. Item response theory 
Item response theory (IRT) is an alternative framework for assessment statistics (as opposed to 
classical test theory which underpins the models discussed thus far).  Its key feature is that it uses 
an iterative procedure to estimate both item difficulties and person abilities simultaneously, but 
both are placed on a common probabilistic (logit) scale rather than expressed with relation to raw 
marks.  One of the reasons to utilise IRT is that placing items onto a common logit scale naturally 
aids in the equating of assessment forms to one another – or crucially, to an item bank, which is 
not possible with classical approaches.8 

With all IRT analyses, the strong assumptions of IRT itself must be upheld by the data in order for 
the model to be valid9 (Kolen and Brennan, 2014).  Notably, the construct must be unidimensional; 
there must be a single underlying ‘ability’ which can be used to accurately model any candidate’s 
likelihood of getting each item correct.  The second key assumption is of local independence; 
candidates’ responses to any one item should not be contingent on another – which is likely to be 
violated in for instance exams where multiple items relate to the same stimulus or prompt.  Similar 
assumptions to those discussed in section 5.3 regarding item functioning remaining stable across 
both forms also apply; we do not repeat those here for the sake of brevity. 

Another factor flagged in Wheadon and Evangelidou (2008) is that whilst IRT approaches are well 
established in many situations, one that does not lend itself well to IRT modelling is assessments 
featuring items with a high total number of marks (often essay-style).  Whilst variant IRT 
approaches exist which can handle items worth multiple marks (i.e. the partial credit and graded 
response models), items with total number of marks approaching 10 or so are increasingly prone to 
‘disordered threshold’ issues which violate the IRT model’s assumption that achieving each mark 
on the item must be more difficult than achieving the last.  This means that assessments with items 

 

 
7 With the exception of Levine observed score equating, which is more suitable than most other nonequivalent groups 
designs for groups with ability differences (Kolen and Brennan, 2014). 
8 Another slightly more fringe scenario IRT equating has a benefit in is, with small cohort sizes, when more than two forms 
are available.  Babcock and Hodge (2020) found that in these cases (where data from multiple forms could be pooled using 
a concurrent calibration), Rasch equating outperformed the other alternatives the authors modelled. 
9 Note that the same could be said of many other approaches’ assumptions! 
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with a high number of marks available are generally unsuitable for use in IRT modelling, and as 
such IRT equating approaches. 

As with other schools of approaches, there are a range of equating approaches possible under 
IRT, which we will outline below. 

4.4.1. Common item 
Common item equating is similar in approach to nonequivalent group designs, as it is underpinned 
by a reliance on both cohorts having sat the same items (though due to IRT enabling item banking, 
one cohort can have sat the common items a long while ago and allowed the ‘banking’ of their item 
parameters).   

There are a few sub-variants of common item equating in IRT.  These are whether a concurrent or 
stepped process is used (Kolen and Brennan, 2014).  A stepped process is analogous to chained 
methods above, where first form A is calibrated onto the IRT scale, then form B separately 
calibrated – but ‘fixing’ the common items’ parameters to those emerging from the calibration of 
form A.  In a concurrent process, both forms A and B are calibrated simultaneously.  Concurrent 
calibration is more computationally intensive and was therefore not preferred in earlier IRT 
equating applications, but is increasingly viewed as the superior option as it uses all the data 
available for common item responses to calibrate them.  Notably, when an item bank has been set 
up a stepped process is typically used; if an item bank has been calibrated some time ago, and we 
need to link a new form’s items in, then it is generally more sensible not to re-estimate the whole 
bank’s parameters as this is done. 

The other major variation is the use of true or observed score equating, two approaches used to 
move back from IRT parameters into units of marks (Lord and Wingersky, 1984).  ‘True’ scores in 
the IRT context are never known; they are the ‘expected mark a candidate with a given ability 
would achieve’.  Observed score equating uses the IRT model to approximate the distribution of 
marks on each form by effectively simulating distributions of marks for candidates at different ability 
levels.  These observed mark distributions can then be equated using equipercentile approaches.  
True score equating is much more computationally simple, but has a theoretical flaw in that it 
assumes the observed marks are true scores (though this becomes less of an issue as cohort 
sizes grow larger).  True score equating is also less robust at the extremes of the mark range due 
to a lack of data.  However, Lord and Wingersky (1984) found that both approaches produce quite 
similar results, so in some situations the difference at the extremes may be minimal. 

There are many other relatively ‘under the bonnet’ variants and tweaks which can be made to IRT 
models that we omit both for brevity and their relatively minimal material impact on IRT common 
item equating.  One that is worth mentioning, however, is the application of Bayesian uncertainty 
reduction techniques when estimating an IRT model (Birnbaum, 1969).  In short, this approach is 
valuable with small sample sizes where the model cannot be reliably estimated.  It uses estimates 
of item difficulty and/or person ability based on prior knowledge or expert judgement to refine the 
model (essentially, create a compromise between the expectations and the empirical model).  
Whilst helpful to make an IRT approach function in small sample settings, it is obviously dependent 
on the accuracy of the estimates used – in cases where unexpected or unknown changes in item 
difficulty or person ability occur (as was the case in the Covid-19 pandemic) then it is likely to 
produce misleading results. 

Ultimately, the IRT common item approach accomplishes something similar to a CEPE approach, 
and follows similar logic (each cohort’s performance on the common items is used to infer what 
performance would have been on the non-common items, and thereby deduce each cohort’s ability 
spread).  Ultimately, the reasons one would generally pick one approach over the other are down 
to the theory being used to model the assessment outside of linking – it’s a lot more trouble to link 
with CEPE if you are already using IRT, for instance.  Obviously in situations where item banking is 
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a factor, IRT is necessitated, but more generally the choice of a classical or IRT-based common 
item approach does not have a clear ‘better’ option.  It is worth noting however that the IRT 
approach essentially always includes a smoothing approach, whereas this is an additional 
consideration often necessitated in non-IRT nonequivalent groups designs (Lord and Wingersky, 
1984). 

4.4.1.1. Pseudo-anchor 

One notable alternate approach to IRT equating is to use pseudo-anchor items rather than 
common anchor items (von Onna, Jongkamp and Lamprianou, 2021).  This means identifying (via 
largely qualitative means given the new items will not have been calibrated yet) pairs of items 
across form A and B which are similar enough that we expect their psychometric properties to be 
extremely similar, and treating them as if they were the same item (i.e. giving the new item in B the 
properties of the paired item in A).10 

This is an attractive approach in high-stakes assessments where using items multiple times is not 
desirable.  However, it is quite risky to make the assumption that the paired items will perform 
identically – even “cloned” items with the exact same format but (for instance) changed quantities 
in a numeracy assessment often have quite different item parameters. 

4.4.2. Common person 
The notable alternative to common item equating which IRT facilitates is common person equating 
(Masters, 1985; Boone and Staver, 2020).  In this scenario, in place of the analyst “fixing” the item 
parameters of anchor items in form B (because their difficulties and so forth have already been 
established when analysing form A), common person equating fixes the ability of candidates who 
sit both form A and B.  This necessitates a change in design; instead of candidates sitting either 
form A or form B (with some common items between forms), candidates must sit both form A and 
form B (but no common items between the two are required). 

The assumption of item stability above here changes to one of candidate stability; that candidates’ 
abilities will be stable across sitting the two forms.  This necessitates sitting both forms at a very 
close point in time (likely with counterbalancing so half the cohort gets form A and half form B first).  
This is arguably less likely to be the case than item stability; items generally do not change from 
paper to paper without outside intervention, but even if forms A and B are administered in quick 
succession fatigue may begin to affect candidates on the second paper, impacting their effective 
ability. 

An IRT common person equating design, whilst an important novel approach to be aware of, is 
also arguably less likely to occur in assessment than many other designs.  However, if for instance 
it was desired to calibrate all the various exams comprising for instance, a Mathematics GCSE 
onto one scale, a common persons design would be a reasonable approach.  This could aid in 
identifying whether the standard of different papers were comparable, for instance, but would be of 
little use in helping to maintain a year-on-year standard. 

 

 
10 Note that in principle, a similar pseudo-anchor approach could be utilised without the use of IRT in chained equating 
approaches; in the literature the use of pseudo-anchors is most commonly coupled with IRT however. 
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There are several key elements to any prediction-based approach.  Firstly the method used to 
derive the prediction, and, in almost all cases, the external indicator of cohort differences used to 
derive said prediction.  This section deals with, initially, the means of generating predictions, and 
then the various metrics commonly used to accomplish this. 

5.1. Ways of deriving a prediction 

5.1.1. Maintain prior outcome 
In a maintain prior outcome (MPO) approach, a prior cohort’s outcomes are directly used as the 
prediction for the current session’s outcomes.  Broadly there are several possible variations on the 
theme of MPO approaches: 

1. Maintain the outcome achieved by the entire prior cohort 
2. Maintain the outcome achieved by a subset of the entire prior cohort 
3. Maintain the outcome achieved by several prior cohorts aggregated together 

The first option is the IB’s current SRB setting methodology and can be characterised as the 
default MPO approach; the whole prior year’s cohort’s outcomes are used as the prediction.  It is 
underpinned by a very straightforward assumption, in that all other things being equal, one 
session’s cohort should achieve similar outcomes as the next.  This is certainly a necessary 
starting point for any standards maintenance approach, and underpins all the other approaches 
discussed in this paper.  As outlined in the discussion of IB’s current approach above however, the 
issue with the approach is that this is all it factors in – it does not utilise any evidence of cohort 
ability or assessment difficulty change.  Whilst IB’s grade award approach does qualitatively factor 
these elements into standard setting, there is no reason why an SRB could not also aim to account 
for these issues, easing the burden on experts and guiding their adjustments to SRBs based purely 
on maintaining the prior outcome. 

5.1.1.1. Maintain a subset of the cohort’s outcomes 

This variant of the ‘maintain prior outcome’ option is generally driven by concerns about the 
stability of the cohort, in situations like substantial cohort growth from year to year.  Typically a 
subset of the cohort perceived to be stable from one year to the next is selected, and their 
outcomes used as the prediction for the same subset of the current year’s outcomes.  For instance, 
if IB opened up a qualification to a new region, then it might be prudent to generate a prediction of 
this year’s outcome for the regions that have historically been sitting the qualification, which would 
be used to maintain just the historic regions’ outcomes.  This approach means that the “non-stable” 
element of the cohort is entirely excluded from the process of setting grade boundaries, and 
therefore that if they are indeed considerably more or less able than the existing cohort, that the 
current standard is maintained. 

The challenge with this second approach is in identifying which subset of the cohort is “stable” vs 
not stable.  Without substantial change as per a new region’s introduction above, it is extremely 
challenging to do this.  The solution much of the literature has settled upon identifies common 
centres between one session and the next, and uses them as the subset (Pinot de Moira, 2019).  
In other words, just the centres who enter candidates in both sessions are used to generate 
predictions and set grade boundaries.  This approach is therefore useful when there is change in 
the centres that are entering for a qualification over time, and there is concern that the cohort’s 
ability might be shifting over time.  Notably, Pinot de Moira (2019) found that common centres was 
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preferable to equipercentile approaches11 for exactly this reason; it aims to control for changes in 
the cohort ability over time. 

The key assumption of a common centres approach is therefore that the subsetted centres’ 
candidates will, on aggregate, will be of similar ability from one session to the next.  This is often 
quite a risky assumption to make, as research on intra-centre volatility in results demonstrates that 
any individual centre’s cohort ability will likely not be particularly stable from one year to the next – 
after all, whilst facilities, practices and teachers persist, the students themselves will be completely 
different.  Common centres (and indeed any other MPO approach) is therefore contingent on there 
being a substantial enough subset of common centres from session to session to smooth out the 
volatility in individual centres.  However, by the very nature of subsetting the cohort reducing the 
sample size, common centres is at greater risk of falling foul of this volatility than an ‘entire prior 
cohort’ prediction. 

A notable variant of common centres approaches is stable common centres (Pinot de Moira, 
2019).  In this approach, only centres with a similar number of candidates in the reference and 
current session are included in the subset.  It aims to eliminate centres whose outcomes from one 
year to the next might be volatile (due to their entry changing substantially) – and this logic is 
certainly consistent with that the common centres approach is based upon, that of identifying a 
stable subset of the cohort in each year.  However, it does result in further attrition of the data 
above and beyond that of common centres, and as such is at greater risk of the benefits of 
identifying a consistent subset of the cohort being outweighed by the increased error inherent in 
trying to maintain outcomes with a small and more volatile dataset.  The below figure demonstrates 
the high attrition in centres which takes place when imposing even moderately stringent constraints 
on stability – note that this is from the English system, which may be more stable than the IB’s 
entry. 

 

 
11 Specifically, ones not featuring common items a nonequivalent groups design, as there are no common items from 
session to session in GCSEs and A-levels. 
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Figure 6: Proportion of English common centres treated as stable with varying stability constraints – 
from Pinot de Moira (2019; pg 2) 

It is also worth noting that common centre approaches are not the only possible methods by which 
a stable subset of the cohort could be identified, just the most prominent.  Given that any 
subsetting technique is reliant on the information about a cohort available in awarding contexts, it is 
perhaps unsurprising that common centres is the most common such approach; in non-IB contexts 
centre and perhaps a few other variables like date of birth and gender are all the information 
available at the time of a grade award.  If more information such as demographic data were 
available about a cohort, then matching techniques (i.e. Mahalanobis distance or caliper 
matching; Baser, 2006) could be used to identify a subset of the cohort that were similar based on 
demographic data rather than (or in addition to) based on which centre they attended.   

However, whilst IB does have more demographic data available about its candidates than many 
other awarding organisations tend to, we would suggest that such an approach, whilst very useful 
for research purposes, might fail the test of public acceptability if utilised to maintain a standard.  A 
matching-based approach would effectively be saying “based on historic candidates with similar 
demographic characteristics, this is how the current cohort is expected to perform”.  Tying stability 
to protected or somewhat sensitive demographic characteristics rather than centre attendance is 
politically unpalatable (Priestly et al, 2020), even if the approach would be statistically defensible 
(and potentially ‘better’ than common centres). 

5.1.1.2. Maintain an aggregate of several cohorts’ outcomes 

The third approach is the other logical alternative to the others; instead of maintaining outcomes for 
the entire cohort of a subset of it, multiple previous cohorts’ outcomes are aggregated together to 
generate a prediction.  As might be apparent, a key advantage of this approach is that it increases 
the volume of data used to generate predictions, and therefore issues of volatility are much 
reduced.  It is therefore particularly appealing for contexts with low entry numbers each sitting, but 
with a relatively stable cohort otherwise – and obviously, several prior session’s worth of data to 
draw upon. 
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Notably, it is entirely possible to combine this approach with subset approaches (we will use the 
example of common centres), which can help to tackle their key drawback of attrition of data.  For 
example, centres which have been sitting the assessment for the past three years might be used to 
derive the prediction.  Whilst in situations of relative stability this can be valuable, in cases where 
centres drop in and out of a subject over time, this approach could plausibly result in a smaller 
cohort than common centres, thereby defeating the entire purpose of bringing in older data. 

The main drawback of this third approach is that older data is time-distal to the current session; if 
there has been change in the cohort over time (perhaps due to a sawtooth effect; Cuff, Meadows 
and Black, 2019; Newton, 2020) or to the assessment, then there is a danger than including older 
data in the prediction might compromise the validity of the approach.  Ultimately this is why this 
approach is not widely used; whilst in theory it sounds promising, the situations it is most valid in 
are those where any number of other approaches are adequate.  Nonetheless, for some small but 
stable IB contexts, it could prove a useful extension to an SRB-setting approach. 

5.1.2. Adjust prior outcome 
The approaches discussed in the above section deal with exactly maintaining a prior outcome, for 
varying groups of candidates, and is therefore contingent on the cohort’s ability being stable over 
time.  Whilst subgroup-based MPO approaches attempts to mitigate this substantial assumption by 
limiting the assumption to “a subset of the cohort’s ability remaining stable”, another possibility is to 
use an external indicator of cohort differences from the reference to the current session to adjust a 
MPO prediction.   

Exactly what these external indicators can be is a substantial topic in its own right and is discussed 
in detail in later sections, but initially it is important to understand the varying methods by which this 
adjustment of prior outcomes can be carried out.  For the sake of the following examples, we can 
consider the external indicator to be an external assessment that candidates in both the reference 
and current years have sat, and that we know their results from. 

The two methods by which prior outcomes can be adjusted are prediction matrices (Ofqual, 
2017) and logistic regression (Benton & Sutch, 2014), and are explained in the subsequent two 
sub-sections. 

5.1.2.1. Prediction matrices 

In a prediction matrix approach, the reference cohort is split into Xciles (i.e. quintiles or deciles) 
based on their performance on the external indicator – in this example, the external assessment.  
For the learners in each Xcile, the proportion of them achieving each grade is then recorded.  You 
may see for instance, the top Xcile achieve 20 per cent grade 7s, and 40 per cent grade 6s, whilst 
the next Xcile down achieves 16 per cent 7s and 35 per cent 6s, for instance.  This percentage 
outcome data is typically presented in the titular matrix, with rows being Xciles and columns 
grades.   

This process is then repeated on the current year’s cohort – the same Xcile cutoffs as in the prior 
year are used to allocate the candidates to Xciles based on their external assessment results 
(meaning that there will not be an even number of candidates in each Xcile).  The approach is then 
governed by the principle that, of the people in each Xcile, we should see the same proportion 
achieve each grade as in the reference year (i.e. 20 per cent of the top Xcile should achieve grade 
7s, and so on).  To accomplish this, the change in N per Xcile from the reference to current year is 
used to determine how many candidates we would expect to achieve each grade in the current 
year.  More technically, the N of candidates per Xcile is multiplied by the percentages in each cell 
of the matrix, which are then summed over each grade to derive a prediction for the number of 
candidates in the current cohort who could be expected to achieve each grade.  
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An example of such a matrix used for English GCSEs (with prior attainment at KS2 level as the 
external indicator) is presented below for reference (Benton and Sutch, 2014). 

 
Figure 7: Example prediction matrix approach – from Benton and Sutch (2014, pg. 11) 

Working through this example, in the top left we note the proportion of candidates in each (in this 
case) octile of prior KS2 performance in the reference year.  This is then used to complete the 
initial matrix in the top right – for example, 11.9 per cent of candidates who achieved less than a 
3.00 on their KS2 go on to achieve a U at GCSE.  We then (in the bottom left) repeat the first step 
to establish the proportions of candidates in each octile in the current year (outcome year in the 
figure)12.  These are then mapped across to each cell in the prediction matrix; if there are 1,000 

 

 
12 Note that Benton and Sutch’s (2014) work is complicated by accounting for the UK’s multiple awarding organisations.  
In a single provider scenario, there would just be one column in the bottom left table and one in the bottom right. 
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candidates who fall into the first octile in the current cohort, we would predict 119 of them to 
achieve only a grade U in the current session, 230 a grade F, and so on.  This process is repeated 
for the candidates in each octile, then the N of candidates allocated to each cell summed in each 
column and converted back into a percentage to derive the overall prediction in the bottom right. 

The key element of this approach is that changes in the cohort’s ability as quantified by the 
external indicator (here external assessment results) are accounted for in the prediction.  In other 
words, if the cohort appears to be getting stronger over time (i.e. their external assessment results 
rise) then we would allow more high grades to be awarded to acknowledge this increase in cohort 
ability – rather than (arguably unfairly) limiting this year’s more able cohort to only the amount of 
top grades achieved last year (Ofqual, 2017). 

There are a few key considerations in this approach.  Firstly, how many Xciles to use.  This is 
largely governed by a) the available sample size and b) the granularity of the external indicator.  If 
cohort sizes are small, then splitting the cohort into many Xciles is likely to introduce instability into 
the approach (though arguably, the entire prediction matrix approach is not optimal with small 
cohorts as the relationship with an external indicator is likely to be unstable regardless of the 
number of Xciles). If the indicator is a set of discrete grades, then it only makes sense to utilise as 
many Xciles as there are grades; if it is more fine-grained marks then using a higher number is 
feasible. 

The second and more important consideration is what the external indicator is.  As mentioned 
above, the many options here will be discussed at length in a later section, but the key point to be 
aware of is that this approach’s potential is entirely contingent on how strong and consistent of a 
predictor the external indicator is of performance on the assessment at hand.  If the predictive 
relationship is weak, then changes in the external indicator will not necessarily reflect changes in 
performance on the assessment, undermining its usage.  If the relationship is not consistent and 
stable over time, then changes in the external indicator might be under- or over-compensated for in 
the method’s assembly of predictions, introducing bias (which may occur if for instance, 
performance on the external assessment rises over time whilst performance on the assessment at 
hand does not).  As such, when selecting an external indicator we must be confident that is it a 
strong and stable predictor of outcomes on the assessment at hand. 

Though it muddies the clear definition of equating and prediction-based approaches in this paper, it 
is worth mentioning the work of Bramley and Vidal Rodeiro (2014).  They established that 
technically speaking, the prediction matrix approach (with prior attainment as the external indicator) 
employed by the English awarding organisations for GCSE and A-level standards maintaining is 
functionally a frequency estimation equipercentile equating approach, using prior attainment as if it 
were an anchor assessment.  The main difference is that the equating is only applied at specific 
grade boundaries rather than throughout the mark range.  Though it has not come to pass, their 
work questions whether, given this similarity, it might be logical to switch to the equating approach 
to allow for smoothing techniques to be applied, the whole mark range to be equated and its 
assumptions to be thoroughly checked. 

5.1.2.2. Logistic regression 

In a logistic regression approach, the reference cohort is used to model the chance of achieving 
each grade on the assessment based on the external indicator.  Technically this is termed a 
‘multinomial’ logistic regression as our outcome variable (grade on the assessment) has more than 
two levels. 

With this models created, we can then use the fitted regression line to predict how likely every 
candidate in the current cohort is to achieve each grade, based on their external indicator.  For 
example a candidate who scores 20/50 on the external assessment might have a 1 per cent 
chance of achieving a grade 7, a 4 per cent chance of achieving a grade 6, and so on.  Once this 
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has been done for all candidates, these probabilities of achieving each grade can be averaged 
across the entire current cohort to provide a prediction for the proportion of the cohort that we 
expect to achieve every grade, just as a prediction matrix approach results in. 

An example of fitted logistic regression lines for certain key grades can be seen below.  Note that 
this example incorporates some elements of an ANCOVA as outlined above; it also factors in 
school type as a background variable. 

 
Figure 8: Example of a logistic regression model for predictions – from Benton and Sutch (2014; pg 
79) 

If we ignore the ANCOVA element and consider just a Comprehensive school (solid blue line) we 
can see that a candidate achieving 100 on the x axis (the predictor variable selected; here 
normalised KS2 marks) would have around an 90 per cent chance of achieving a grade F or 
above, around a 20 per cent chance of achieving a grade C or above, and around a 0 per cent 
chance of achieving an A or above.  These probabilities can be integrated to derive the 
probabilistic prediction for candidates on 100 as outlined above: they have a ~10 per cent chance 
to achieve lower than an F, a 70 per cent chance of achieving between a D and an F, a 20 per cent 
chance of achieving a B or a C, and no chance of achieving an A or above. 

Just as with prediction matrices, the same assumptions are made in logistic regression – the 
relationship between the external indicator and assessment needs to be strong and consistent in 
order for the approach to produce valid predictions, meaning the choice of external indicator is just 
as important.  However, whilst the number of Xciles is not a decision needed, there are others 
required. 

The main choice needed is the regression methodology utilised.  The most straightforward is a 
linear regression which will work well in many situations – but some external indicators may not 
have a linear relationship with performance on the assessment at hand.  Pre-live usage modelling 
would be necessary to establish whether a linear relationship does bear out, and in live settings the 
fit of the regression model (potentially compared to non-linear alternatives) should be checked to 
verify that the specific type of regression chosen remains appropriate.  

Compared to prediction matrices, the main advantage of this approach is that it is less coarse than 
a prediction matrix (particularly where the number of Xciles selected is low), and therefore retains 
more fine-grained information from the external indicator than binning candidates into Xciles does.  
In Benton and Sutch (2014) a comparison of the two approaches in the UK general qualifications 
setting found that logistic regression resulted in more accurate predictions – but only marginally so.  
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Whilst their evaluation of it is somewhat conflated with use of a normalised external indicator to 
combat its inflation over time, the key benefits of a logistic regression approach were improvement 
in predicting the extent of differences between awarding organisations, and being more accurate 
for subjects with a large number of high ability candidates.   

Whilst IB is a sole practitioner and does not have other awarding organisations to worry about, this 
might be applicable to (for instance) differences between countries which have different value 
added relationships between the external indicator and performance on the assessment at hand.  
This raises another potential benefit of logistic regression; it is relatively straightforward to add 
additional control variables into the regression to account for this type of differential relationship 
with the external indicator amongst subsets of the cohort. 

The main downside of logistic regression is its complexity – not in terms of implementation; there 
are many robust software packages which can be used to implement the approach technically – 
but in terms of explaining it to stakeholders.  Whilst it is a relatively straightforward and well known 
statistical technique, any regression method is somewhat of a black box in terms of how the 
predictive relationship between variables is established.  There is a risk that an audience would 
need to have how regression as a concept explained in order to understand how a logistic 
regression functions, whereas prediction matrices are straightforward enough to be computed with 
pencil and paper and lend themselves to much easier exemplification.  Explaining regressions to a 
lay person almost necessitates the use of figures and graphs to show the relationship between 
variables and the regression line. 

5.2. External indicators of cohort differences 
As noted above, the strengths and weaknesses of the adjust prior outcome approaches depend on 
which external indicator of cohort differences is used.  Ultimately any external metric could be used 
for this purpose, but in this section we discuss a few of the most commonly utilised. 

5.2.1. Prior attainment 
The most commonly utilised external indicator of differences between a reference and the current 
cohort is a measure of both cohorts’ prior attainment on another assessment.  This is the chief 
method utilised in England’s general qualifications; for GCSEs key stage (KS) 2 national curriculum 
tests (NCTS)13 are used to derive a metric of prior attainment, and for A-levels GCSEs are used to 
derive a metric of prior attainment (Ofqual, 2017).  In both cases, results across the suite of KS2 
tests/GCSEs are averaged in an attempt to approximate a “general ability” measure for all 
candidates, and this average of performance in the suite of assessments is used as the prior 
attainment measure for standards maintenance purposes. 

The derivation of a general ability type measure is key to the success of this approach in the UK 
context; any individual GCSE result would be a very poor predictor of outcomes on a given A-
level14, as there is a substantial amount of error inherent in any individual subject’s grade (not to 
mention, the grades used here are fairly coarse measures of performance in the first place15).  
Similarly, another major factor in its success is the sheer volume of data available; nearly all 

 

 
13 Commonly, although falsely, referred to as ‘SATs’. 
14 Whilst a given GCSE predicting an A-level in the same subject might be assumed to be quite strongly predictive, there 
are several issues with this.  Firstly, some A-level subjects have no clear comparator at GCSE, or several, which renders 
gathering prior attainment information problematic.  Secondly, some subjects are much smaller at GCSE than A-level (i.e. 
Psychology or Philosophy), which leads to only a fraction of the cohort having prior attainment data.  So whilst using (for 
instance) English Language GCSE results to predict English Language A-level results might work well, this would fall down 
for many other lower entry subjects. 
15 Though it is possible to normalise KS2  
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students in England will have KS2/GCSE results to inform the method16.  In combination, these two 
factors combine to render prior attainment a powerful approach (for instance it has been found to 
exceed the predictive power of common centres approaches; Taylor, 2014).   

However, the primary issue with prior attainment is that it is time-distal from the assessment at 
hand, and there is no guarantee that the candidates have all progressed equally since the time the 
prior assessment was sat.  For instance, if there were changes to the teaching of students after 
their prior assessment that have increased the ‘value added’ to their learning and resulted in them 
performing better on the assessment at hand, then this would be completely missed by a prior 
attainment methodology, which can lead to grad inflation/deflation (Bramley, 2013).  In other 
words, the core assumption is that any shift in prior attainment will be perfectly reflected in 
achievement in the assessment at hand. 

A related issue faced by the English setting in using this approach is that there are different 
awarding organisations (AOs) each of which deliver the same qualification and thus need to 
generate separate predictions.  Benton and Sutch (2014) note that this results in an issue when the 
centres which select to use each AO have different value added between the prior assessment and 
the current ones – leading to some AOs’ predictions being over-generous and others’ under-
generous.  IB, despite having different countries and centre types which are likely to experience 
similar differential value added, is insulated against this issue because it is the sole provider of its 
programmes.  As long as the value added relationship across the whole cohort remains consistent 
year-to-year, a sole provider can be confident in prior attainment as external indicator. 

5.2.1.1. Reference test 

One of the pitfalls of England’s prior attainment approach to standards maintenance is that it fails 
to account for improvements in performance in particular subjects over time (Bramley, 2013).  
Because whether outcomes are allowed to improve is pinned to an approximation of general 
ability, if there has been progress in a specific subject but not others, this will be ‘glossed over’ by 
the approach.  The solution to this was to implement a reference test – get a small but 
representative sample of students from across the country to sit a “GCSE-like” assessment at a 
similar time to their GCSEs that is graded in a similar manner (Ofqual, 2019).  Crucially, the 
reference test remains almost entirely the same over time – the same questions are posed year-
on-year. 

If there had been specific absolute improvements in performance, this use of the same paper year-
on-year readily identifies this.  This information is then fed into the prediction based on prior 
attainment (as outlined above) – but with an element of judgement involved.  For instance, if the 
reference test indicated that 3 per cent more candidates were at the A* level, then this would not 
automatically mean that the prediction for A* was increased by 3 per cent – an increase of only 1 
or 2 per cent might be applied. 

It’s also possible to use a reference test in isolation as a source of prior attainment17 information 
which can then be fed into a prediction matrix or logistic regression model.  However, doing this 
loses many of the advantages of the cohort-level prior attainment information outlined above – 
chiefly that of sheer volume of data.  Whilst a reference test’s cohort should be selected to be 
representative, there is still a greater risk of cohort effects than with a near-system wide source of 

 

 
16 Eason (2006) suggests that the approach works with cohorts of over 100 candidates, but Ofqual (2015)’s information on 
tolerances applied to the approach in GCSEs shows that it is most stable with 3,000 or more candidates. 
17 Though arguably, whilst a reference test must be sat prior to the assessment at hand, it could be deemed ‘concurrent 
attainment’ as it is much more time-proximal to the assessment at hand than prior attainment usually is. 
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prior information.  However, in situations where such a wide-reaching source of prior attainment is 
not available, this ceases to be a concern. 

Whilst reference tests seem like a valuable tool to mitigate a key weakness of using prior 
attainment that is time-distal to the current assessment, there are some substantial obstacles.  
Firstly, practically operating a reference test is extremely challenging – it will be time consuming to 
develop, administer, mark and analyse, especially given the stringent security requirements which 
need to be in place to prevent it becoming exposed over time.  There is also an issue of school 
recruitment – given the need for the sample of students sitting it to be representative, unless 
participation is compulsory it’s likely that some schools will be unwilling to take part and will cause 
representativeness to be compromised. 

Secondly and perhaps more problematically, a reference test is only really useful relative to the 
standard of its own subject – a mathematics reference test can tell us whether there have been 
gains in the prior assessment to current assessment value added for mathematics, but not for 
music or history.  A reference test in each subject would be required in order to adjust that subject 
in this manner, which rapidly becomes completely infeasible. 

Arguably the logical conclusion to the question of when reference tests are most valuable is “when 
we have a stable cohort but expect a shift in absolute performance to manifest due to extraneous 
factors like a new method of teaching being rolled out”.  For example, if a new computer science 
curriculum is deployed, then a reference test in this subject might be very valuable in order to 
detect and factor in absolute improvements in performance filtering through with consecutive 
cohorts.  However, because a reference test needs to be in place before improvements begin, and 
the lead time on developing and implementing them is substantial, the practicality of such an 
approach is questionable at best.  In England, reference tests are only used in the two most high-
stakes and largest entry GCSEs; English Language and Mathematics (Ofqual, 2019). 

Another locale which makes substantial use of reference tests is Hong Kong (Burdett et al, 2013), 
but again only referencing in the “core subjects” is implemented, again speaking to the 
practicalities of reference testing an entire suite. 

5.2.2. Concurrent attainment 
An alternative to utilising a measure of candidates’ prior attainment to inform predicted outcomes, 
is to instead utilise a measure of their concurrent performance on the suite of assessments 
currently being sat.  That is, in GCSEs, instead of the average KS2 score being used to predict 
GCSE outcomes, the average GCSE points score could be instead (the IB analogues being MYP 
and DP respectively).  The problem with this approach is fairly clear – it is cyclical, because until 
we have awarded all subjects, we will not know any given candidate’s mean grade. 

This limits the usefulness of concurrent attainment in a live awarding setting, with it typically being 
used to validate grade boundary setting and awarding after the fact (England carries out a cross-
AO screening exercise using mean GCSE grade immediately prior to releasing results to 
candidates; Taylor, 2014). 

That said, it is worth noting that research in the English context has shown that mean GCSE grade 
is a better predictor of outcomes on a given subject than average KS2 score, or any of the various 
common centre approaches (Eason, 2012; Taylor, 2014).  This is unsurprising; the time-proximal 
nature of concurrent attainment means that concerns about differential value-added since a prior 
time point are nullified, and unlike common centre-type approaches, it can utilise the entire cohort’s 
data.  If an approach could bypass the practical issues of utilising concurrent attainment, it is likely 
it would be a strong and robust external indicator of performance to input into prediction-based 
methods. 
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5.2.2.1. Instant summary of achievement without grades (ISAWG) 

The key problem with typical concurrent attainment approaches outlined above is actually two sub-
issues, the first being that as more and more subjects are awarded, any given candidate’s mean 
grade will change, and the second being that grades are not known until after award meetings and 
grade boundary setting – causing a significant delay in any one subject’s data contributing to the 
mean grade metric.   

The former problem is fairly insurmountable, though it is possible to address it to some degree by 
shifting the award of the largest subjects to earlier in the session.  The latter however can be 
addressed by moving away from using grades as a measure of concurrent attainment; this is the 
aim of the ‘Instant summary of achievement without grades’ or ISAWG method developed by 
Benton (2017).  If we are not contingent on knowing candidates’ grades to input a subject’s data 
into a concurrent attainment approach, then we can utilise much more data at any given point in an 
awarding session.   

The below figure demonstrates how the additional data available to ISAWG means that a fairly 
stable estimate is available a relatively short way through an awarding session; each pane 
represents a point further through the awarding session and how closely the ISAWG measures 
generated at that point correlate to the measures which are derived at the close of the session. 

  

  
Figure 9: ISAWG convergence over a WJEC awarding series – from Johns & Evans, 2019, slide 6) 
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Benton summarises the ISAWG approach as follows: 

1. Within [the current and reference years] create a single measure of ability for all candidates 
that is on the same scale regardless of which assessments any given pupil has taken.  

2. Having created this measure, by looking at achievement across all assessments together, 
we can find sufficient centres with stable entries over time to [put it on a common scale] 
between years.  

3. Now that we have a calibrated measure of achievement that is comparable over time, we 
can use it to inform the positioning of grade boundaries in all qualifications. 

More technically, the approach uses standardised scores18 on each assessment (notably, not 
subject as a whole, but rather each individual component within each subject) to derive an ISAWG 
score for each candidate in each session (i.e. the reference and current session).  This is 
accomplished using an iterative procedure called alternating regression to “home in” on the best 
estimate of ISAWG score for each candidate, until error is reduced to an acceptable level (or the 
maximum number of iterations is reached).  The full details are given in Benton (2017), but in 
essence, the approach is effectively a form of Principal Components Analysis; reducing many 
estimates of candidates’ ability to a single numeric metric (or component). 

Once this has been done, a number of equating methods outlined above can be used to calibrate 
the reference year and current year’s ISAWG scores onto the same scale.  Benton (2017) utilised 
weighted unsmoothed equipercentile and chained equating, finding that chained equating resulted 
in a much lower equating error – but that this might be attributable to the simulated data used for 
the research.  They conclude that both frequency and chained approaches should be tested when 
using an ISAWG approach. 

After the calibration of each year’s ISAWG has been completed, the metric is ready to be used as 
an external indicator of performance in any prediction-based approach; much like with prior 
attainment, it can be used as an input to prediction matrix or logistic regression methods to 
establish a prediction for the proportion of candidates that should achieve each grade. 

A key factor to raise about why ISAWG ‘works’ is that it relies on overlap in entry between subjects 
within the suite being used to derive the ISAWG metric.  If, for example, for A-levels in the UK, 
candidates sitting a particular group of subjects (for example French, Spanish and German) only sit 
those subjects and not any others, then they would be isolated from the rest of the suite and it 
would be impossible to work out a measure of language subject candidates’ ‘general ability’ that is 
comparable to such a measure for the rest of the subjects in the suite.  However, this is not the 
case in reality (though some subjects are always “less connected” than others) – particularly in the 
IB’s case19 since the ‘subject area’ approach means that candidates are guaranteed to have sat a 
wide range of subjects, and that there are strong links for all candidates through high entry 
subjects like Mathematics and so forth.  Because the whole suite is linked by candidates sitting 
many different combinations of multiple subjects, a general ability metric can be derived across the 
suite. 

The slight issue this introduces is that the ISAWG measure itself will be more influenced by some 
subjects than others.  If more candidates do certain subjects which in turn act as key links in the 
network of entries, then those subjects might have considerable influence on the overall ISAWG 
score (Johns & Evans, 2019).  This is a similar reason to why in assessment statistics we remove 
marks on the item at hand from the total mark used in discrimination indices; items with a very high 

 

 
18 Z-scores with a mean of zero and an SD of one. 
19 Or indeed many other national assessment systems worldwide; A-levels are if anything slightly outlying in narrowing the 
scope of study to so few subjects. 
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total number of marks available otherwise have a substantial impact on candidates’ overall rank 
order in a paper. 

This issue can be visualised by creating connectivity plots between subjects, such as the example 
below.  Each circle represents a subject, with its size the number of entrants.  Lines represent 
common entrants between subjects. 

 
Figure 10: Example of subject connectivity for Cambridge Assessment qualifications – from Benton 
(2017; pg 5) 

In this graph, there are a number of large highly connected subjects with many connections – 
these will be influential on any ISAWG measure derived.  The small extraneous subjects are much 
less connected and will have minimal impact on an ISAWG measure.  Notably, the suite of 
assessments in this example has three somewhat discrete sets of qualifications (in each colour) 
and so there might be an argument for deriving separate ISAWGs for each. 

Similarly, if there are more assessments for a given subject (or subject area) than for others, these 
will have more impact on the ISAWG scale derived.  Think about a suite with 10 mathematics 
exams and 3 reading ones; the mathematics exams will contribute significantly more to the ISAWG 
than the handful of reading ones, meaning that the resulting ISAWG score ceases to reflect 
general ability and more just ‘mathematics ability, with a side of reading’.  Essentially the point here 
is that the ISAWG is the sum of its parts, and whilst how it is computed is somewhat of a ‘black 
box’ which obfuscates how it is arrived at, it will always be the case that some subjects or subject 
areas will carry greater weight than others.  
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There are a few key benefits that make ISAWG unique amongst the possible approaches to 
maintaining standards statistically.  Firstly, it is arguably the “best” concurrent attainment approach 
insofar as it allows for more data to be included in derivation of the general ability measure than 
one relying on grades – and as discussed above, concurrent attainment has been proven to be a 
better predictor of attainment than prior attainment.  So, ISAWG means using a better predictor of 
attainment than other options – likely due to the time-proximal nature of concurrent attainment. 

Secondly, ISAWG is unique amongst all the approaches discussed in this paper in that it is the 
only approach that can be reliably used for completely new specifications.  Because most 
approaches rely on maintaining the prior outcome/equating to another assessment form in the 
same subject, if a subject is new then there is nothing to maintain.20  However, ISAWG instead 
generates an expected outcome based on performance across the whole suite, so can be used 
even in a subject’s first session. 

Thirdly, ISAWG can be used quite reliably for very small subjects’ awards, again because it draws 
on data from across the entire suite.  Whilst small subject predictions can never fully avoid issues 
of unreliable predictions, it is considerably better to use (for instance) a 100 strong cohort’s data in 
six other subjects than to use last year’s 80 strong cohort’s data in just this one small subject to 
generate a statistical prediction.  Indeed, this was a key reason for Johns and Evans’ (2019) 
investigation of the approach as an alternative to common centres. 

However, whilst these benefits are real and very substantial, there are also real drawbacks to this 
approach.  As outlined above, one relates to the ISAWG’s nature as dependent on “what goes in”, 
and inevitably more influenced by some subjects than others – which is exacerbated by its being 
somewhat of a ‘black box’, as it is not possible to easily tell what subjects have greatest influence 
without further analyses.  That said, there is a possible way to mitigate this – by carrying out 
ISAWG on a subset of data.  For example, a ‘Science ISAWG’ and ‘Arts ISAWG’ could be 
independently computed and used for the relevant subjects’ predictions, allowing more control over 
which subjects influence which predictions and potentially increasing their validity (though analysis 
would be needed to verify this).  The downside is that this reduces the amount of data included in 
each ISAWG, which might undermine the robustness of the approach in a similar way to subsetting 
common centres to just stable common centres.  In summary, much further investigation would be 
needed to establish whether such a subsetting approach could help mitigate this issue – and even 
then, the ISAWG statistic itself remains non-transparent and inevitably will be more impacted by 
some subjects than others; with subsetting we could just control which subjects those are to some 
degree. 

Any concurrent attainment approach is also, practically speaking, non-deterministic, in that 
because more data is fed into the ISAWG as the session progresses, a different prediction for a 
component would emerge at the end vs the start of the session (Johns and Evans, 2019).  At its 
extreme, the earlier subjects may not be awardable using ISAWG because no concurrent 
achievement data is yet available.  This can however be mitigated by ensuring that the largest 
and/or most influential subjects in the measure are awarded early on in the session, thereby 
stabilising the measure as quickly as possible.  Nonetheless, any use of ISAWG must be content 
with this feature and plan the session around it. 

Finally, an additional major factor in ISAWG’s development is the complexity surrounding the 
approach, and how lengthy this makes modelling of its use.  ISAWG can be used with prediction 
matrices or logistic regression, to inform the whole cohort or a subset’s prediction (common 

 

 
20 Notably, this represents a deviation from the standards maintenance scenario this paper focuses on – but new subjects 
are a scenario of interest, so a brief discussion of standard setting is useful in this context. 
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centres), can be carried out on subsets of subjects, needs checking in order to establish which 
subjects are most influential, ISAWG could be used for just some subjects’ awards and not others, 
and the equating forming step two above can be one of the various score equating ones explored 
previously in this paper.  In short, there are innumerable possible variants to an ISAWG approach 
which would need to be investigated to determine the optimal one – as the length of this section 
attests to.  Whilst, once an approach is agreed, it is not too computationally intensive (though it still 
needs specialist statistical software to carry out), actually settling on the precise approach would 
require substantial investigation up front. 
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The above two sections have dealt with the two main schools of statistical standard setting 
methods; score equating techniques and prediction-based ones.  However, if anything has been 
made apparent in this paper, it is hopefully that the myriad of different approaches have different 
benefits, detriments, and applications – and give different results.  Carrying out several methods, 
as much of the literature does for purposes of comparison, will give several (often very) different 
answers as to what marks on one assessment form are equivalent to those on another. 

This is, fairly intuitively, generally considered a problem – how can an analyst tell which approach 
is the most valid for their particular situation?  This section covers a handful of pieces of work 
which have investigated ways in which the myriad of different approaches can be part of a solution 
instead. 

Von Davier (2011) discusses the averaging of equating functions to achieve a compromise 
between them.  Weighting the two (or more) functions averaged is possible in order to favour one 
or several.  A number of different ways to achieve this aim are discussed, including the angle 
bisector method and the ‘swave’ approach.  If using equating techniques and uncertain of which is 
‘best’, for instance when all possible approaches have some of their assumptions violated, then 
this is a viable approach – but it naturally takes additional time and adds complexity.  It might also 
be difficult to explain why the selected average is more valid than any one equating function. 

Bimpeh (2018) used a Bayesian approach to integrate examiner judgement and statistical 
predictions about where grade boundaries should fall in UK general qualifications.  The main 
challenge here was selecting weights to apply to each source of information – the number of 
candidates the predictions were based off was used for the statistical information, and the number 
of candidates on marks scrutinised by examiners was utilised for the judgemental.  Ultimately, the 
result is not too dissimilar to a weighted average; the main benefit of the Bayesian approach being 
the easy derivation of confidence intervals around said average.   

Whilst a neat approach to integrating generally discrete information together in a manner that 
provides valuable certainty metrics, ultimately the choice of what values to use as weights 
determines which is given more credence in the results – arguably it could be reasonable to set 
rules on what weights to use governed by the analysts’ perception of the reliability of various 
evidence sources.  For instance, the number of matched candidates could always be the weight 
applied to the statistical data, and the number of expert judges could be multipled by a flat value 
(say 1,000) to ensure that it was given more weight in cases where there was little statistical 
information.  The other main factor to consider with such an approach is its complexity, both in 
terms of explaining it to laypersons, and implementation. 

Von Onna, Jongkamp and Lamprianou (2021) utilised a combination of ANCOVA, pseudo-anchor 
and a judgemental standard setting approach (termed 3DC), together with a resit analysis to 
provide a lower bound for the exercise.  This was combined in a complex manner governed by a 
‘flowchart’, with rules dictating the course to take if there was a discrepancy between different 
sources of information (i.e. by eliminating one approach).  One method was selected as the 
baseline, and then others were used to validate it.  If passing through the specified rules (i.e. not 
completely discrepant from other approaches), they would be added into a weighted average of the 
pass marks suggested by each approach, using either the number of candidates or the standard 
error as the weight as appropriate.   

This provides a template for a potential means to integrate multiple standard setting approaches 
via a combination of a rules-based and statistical system, rather than a purely statistical one.  
Different contexts would of course need to develop their own set of workable approaches based on 
the data available and assessment form design, but in principle in any situation several equating 
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approaches could be performed and an integrative exercise conducted.  The main downside is the 
significant additional complexity and effort involved – and arguably, introducing many equating 
methods might compromise perception of the equated marks as valid if the nature of statistical 
error is not explained carefully.  Nonetheless, especially in high-stakes situations it is hard to argue 
that combining several sources of information would not increase the validity of an equating 
exercise – if all such approaches had been carefully considered and modelled beforehand.  
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Whilst the approaches taken forward for modelling will be agreed with IB personnel, in this section 
we present our initial reflections on the approaches which may or may not be suitable for the IB.  It 
is important to outline the contexts IB’s assessments encompass to enable this: 

1. Large stable subjects 
2. Small subjects 
3. Growing subjects 
4. Changing curriculum or assessment models 
5. New subjects 
6. Cohorts with varied strengths (due to inconsistent syllabus coverage in different regions) 
7. (Usually small) subjects with no cohort overlap from year to year 
8. Verification model (coursework where fixed boundaries are reviewed each session) 

It is also worth noting some important factors about the data available to the IB and their 
assessments in general: 

• The IB MYP provides some prior attainment information for DP subjects, but a large 
proportion of the DP candidature does not take the MYP. 

• The IB does collect some demographic information about its candidates beyond (for 
instance) gender and age. 

• The IB’s assessments are generally high-stakes and as such security is a key concern, 
meaning re-use of items is not conducted from session to session.  However, there are 
some limited commonalities between sessions: 

o Coursework is common between sessions, and currently retains the same 
boundaries each sitting. 

o In some cases there are commonalities between papers for different timezones. 

It is perhaps easiest to begin by ruling out some approaches.  Despite its heavy use in other 
systems, prior attainment is unlikely to prove a fruitful approach for the IB, as it is reliant on having 
substantial volumes of prior attainment data in order to be such a powerful way to generate 
predicted outcomes.  Similarly, implementing reference test(s) is unlikely to prove practical. 

Due to the lack of common items between sessions, we can also broadly rule out nonequivalent 
groups designs as a whole, along with IRT-based approaches21.  There is one notable caveat, 
however; in subjects where coursework features, it might be possible to use this as an anchor 
assessment – though of course this assumes that changes in performance on the coursework 
would be reflected by those on the other assessments.  This is not necessarily the case; often with 
static coursework tasks outcomes rise over time due to increasing teacher familiarity, which if 
coursework is used as an anchor assessment would lead to equating models assuming a constant 
rise in the ability of the cohort, and commensurate overall creep in outcomes over time.  As such a 
review of whether this is the case for IB coursework generally would be needed to assess whether 
any nonequivalent groups design is likely to be advisable for subjects with coursework. 

This leaves, to generalise, three broad approaches: 

d. Basic equating techniques 

 

 
21 Common person equating is unlikely to prove fruitful in maintaining standards from one session to the next given the 
time gap between them – resit analysis would be more appropriate.  Further, context 6, cohorts with varied strengths, 
clearly violates the unidimensionality assumption key to IRT. 
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e. Concurrent attainment approaches 
f. Approaches seeking to maintain the prior outcome (i.e. via common centres) 

Basic equating techniques, as a whole, are suitable in situations where the two cohorts are 
comparable in ability.  However, considering the IB’s list of contexts above, only around half of the 
scenarios meet this assumption (stable subjects in particular, but the approach is also likely to 
work when curriculum or assessment models change or in new subjects, if a suitable comparator 
assessment can be found and the cohort is stable).  Ultimately these cases where basic 
techniques can work are those where the cohort is stable and consistent over time (it being 
reasonably large is important too, as this impacts how likely the cohort is to be stable).  In these 
scenarios basic techniques are likely to be viable due to their relative simplicity – equipercentile 
and circle-arc equating would seem, based on the literature, to be the preferred choices.  Whilst 
ANCOVA approaches are useable given the IB’s wealth of demographic data, they are fraught with 
potential ethical debates so should be weighed up extremely carefully before adoption. 

It is worth noting that basic equating approaches can be applied in almost any circumstance (they 
need only a small sample size), which might mean that in some cases they are the only viable 
option.  The question is whether it is advisable to do so (i.e. if cohorts are likely to be dissimilar), or 
whether it would be preferable to rely on judgemental approaches alone.  Another key issue with 
adopting basic approaches is that they do not flag when the cohort begins to destabilise – this 
would need to be screened for to avoid a situation where basic approaches are inappropriately 
persisted with even as a subject’s cohort begins to change. 

Concurrent equating approaches largely boils down to ISAWG approaches; as outlined in our 
discussion of that approach, it moving away from grades is a major practical benefit which means 
more data is available to inform the ISAWG score at every point in an awarding session.  ISAWG is 
undoubtedly an extremely powerful approach, and one that appears suitable for IB’s programmes 
due to their featuring a broad range of assessments with some (i.e. Mathematics) that form strong 
links throughout the dataset.   Further, it offers (by some margin) the most convincing equating 
approach for some of the most awkward contexts, including very small subjects, those with 
complete cohort change, and completely new subjects.  Completely new subjects in particular are 
completely unmanageable by any other approach. 

However, ISAWG approaches are extremely complex, with a huge wealth of available options and 
modifications (even when compared to the other approaches in this paper).  It is worthy of a full 
literature review and investigation alone, such is its complexity.  It seems likely that ISAWG would 
be a method that can offer solutions for IB’s most challenging contexts, but would require a 
substantial amount of effort to adequately trial and implement it – effort which might be 
disproportionate to the benefits it offers.  The approach also has other drawbacks, being tricky to 
implement and a black box in terms of ease of explanation to laypersons. 

Approaches seeking to maintain the prior outcome can likewise be characterised as either the 
current IB SRB approach, or the common centres group of approaches.  The current approach 
shares the flaws of the basic equating approaches (being strictly norm-referenced it is similar to an 
equipercentile approach), so refer to the above discussion for its strengths and weaknesses.  The 
common centres approach however is a well-established means of attempting to account for 
cohort changes that is viable as long as there is a large enough cohort, and sufficient centres 
taking the subject from one year to the next.  Whilst found to not be as strong of a method as prior 
attainment for maintaining outcomes, it is still superior to many other approaches as it aims to 
account for any change in cohort ability over time.  It is also appropriate in just about all of IB’s 
contexts, with the exception of very small cohorts and completely new subjects (though there is the 
possibility of using common centres to link to a similar existing subject, dubious as this may be). 
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As such, common centres seems worthy of consideration as somewhat of a ‘default’ option for 
SRB-setting, given its fairly broad useability in the IB’s contexts.  However it will be important to 
investigate how many subjects have sufficiently large entries to use it, as many of IB’s subjects 
have fairly small entry sizes which would render the data attrition common centres leads to highly 
problematic.  It may also emerge that common centres prove unstable and therefore the approach 
does not work as well as in a single-country system. 
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